Despite the growing interest in the role of reactive oxygen species (ROS) in health and disease, reliable quantitative noninvasive methods for the assessment of oxidative stress in humans are still lacking. EPR technique, coupled to a specific spin probe (CMH: 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) is here presented as the method of choice to gain a direct measurement of ROS in biological fluids and tissues. The study aimed at demonstrating that, differently from currently available "a posteriori" assays of ROS-induced damage by means of biomolecules (e.g., proteins and lipids) spin-trapping EPR provides direct evidence of the "instantaneous" presence of radical species in the sample and, as signal areas are proportional to the number of excited electron spins, lead to absolute concentration levels. Using a recently developed bench top continuous wave system (e-scan EPR scanner, Bruker) dealing with very low ROS concentration levels in small (50 μL) samples, we successfully monitored rapid ROS production changes in peripheral blood of athletes after controlled exercise and sedentary subjects after antioxidant supplementation. The correlation between EPR results and data obtained by various enzymatic assays (e.g., protein carbonyls and thiobarbituric acid reactive substances) was determined too. Synthetically, our method allows reliable, quick, noninvasive quantitative determination of ROS in human peripheral blood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412105 | PMC |
http://dx.doi.org/10.1155/2012/973927 | DOI Listing |
Mol Biol Rep
January 2025
Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-46, Tamil Nadu, India.
Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Universidad de los Andes, Biology, Cra 1 # 18A-10, Bogota, Cundinamarca, Colombia, 110121;
Pathogenic bacteria use Type 3 effector proteins to manipulate host defenses and alter metabolism to favor their survival and spread. The non-model bacterial pathogen pv. () causes devastating disease in cassava.
View Article and Find Full Text PDFChem Biodivers
January 2025
Chuxiong Normal University, Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000,China, No. 456 Luchengnan Road, chuxiong, Academy of Science and Technology, 651000, chuxiong, CHINA.
Gray mold disease is caused by B. cinerea, which could severely reduce the production yield and quality of tomatoes. To explore more potential fungicides with new scaffolds for controlling the gray mold disease, ten aldehydes-thiourea derivatives were designed, synthesized and assayed for inhibitory activity against three plant pathogenic fungi.
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
Department of Biochemistry, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India.
Mitochondrial DNA (mtDNA) variants considerably affect diabetes mellitus by disturbing mitochondrial function, energy metabolism, oxidative stress response, and even insulin secretion. The m.3243 A > G variants is associated with maternally inherited diabetes and deafness (MIDD), where early onset diabetes and hearing loss are prominent features.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
The natural world is a vast reservoir of exceptionally varied and inventive chemical compositions. Natural products are used as initial compounds to create combinatorial libraries by targeted modifications and then by analyzing their structure-activity connections. This stage is regarded as a crucial milestone in drug discovery and development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!