Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron and iron oxide nanoparticles (NPs) are finding wide applications for the remediation of various toxic chloro-organic compounds (such as trichloroethylene, TCE), via reductive and oxidative processes. In this study, Fe NPs (30-50 nm) are synthesized by reduction from ferric ions immobilized (by ion exchange) on a platform (two types of sulfonated silica particles), in order to prevent the NP agglomeration. Next, the Fe NPs are oxidized and their effectiveness for the oxidative dechlorination of TCE via the heterogeneous decomposition of hydrogen peroxide to OH• on the surface of the iron oxide NPs was demonstrated. For the reductive approach, the use of ascorbic acid as a "green" reducing agent in conjunction with a secondary metal (Pd) inhibits NP oxidation and agglomeration through surface adsorbed species. The Fe/Pd NPs have been successfully applied for the dechlorination of TCE (k(SA), surface-area normalized reaction rate, = 8.1 ×10(-4) L/m(2)h).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417209 | PMC |
http://dx.doi.org/10.1021/ie301031u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!