Acrolein (Acr) is a ubiquitous environmental pollutant as well as an endogenous compound. Acrolein-derived 1,N(2)-propanodeoxyguanosines (Acr-dG) are exocyclic DNA adducts formed following exposure to cigarette smoke or from lipid peroxidation. Acr-dG is mutagenic and potentially carcinogenic and may represent a useful biomarker for the early detection of cancers related to smoking or other oxidative conditions, such as chronic inflammation. In this study, we have developed a high-throughput, automated method using a HistoRx PM-2000 imaging system combined with MetaMorph software for quantifying Acr-dG adducts in human oral cells by immunohistochemical detection using a monoclonal antibody recently developed by our laboratory. This method was validated in a cell culture system using BEAS-2B human bronchial epithelial cells treated with known concentrations of Acr. The results were further verified by quantitative analysis of Acr-dG in DNA of BEAS-2B cells using a liquid chromatography/tandem mass spectrometry/multiple-reaction monitoring method. The automated method is a quicker, more accurate method than manual evaluation of counting cells expressing Acr-dG and quantifying fluorescence intensity. It may be applied to other antibodies that are used for immunohistochemical detection in tissues as well as cell lines, primary cultures, and other cell types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524569PMC
http://dx.doi.org/10.1369/0022155412459759DOI Listing

Publication Analysis

Top Keywords

quantitative analysis
8
dna adducts
8
adducts human
8
human oral
8
oral cells
8
automated method
8
immunohistochemical detection
8
cells
5
acr-dg
5
method
5

Similar Publications

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Critical Path for Alzheimer's Disease (CPAD) Consortium, Critical Path institute, Tucson, AZ, USA.

Background: To help improve the Alzheimer's disease (AD) therapeutics research and development process, the Critical Path for Alzheimer's Disease (CPAD) Consortium at the Critical Path Institute (C-Path) provides a neutral framework for the drug development industry, regulatory agencies, academia, and patient advocacy organizations to collaborate. CPAD's extensive track record of developing regulatory-grade quantitative drug development tools motivates sponsors to share patient-level data and neuroimages from clinical trials. CPAD leverages these data and uses C-Path's core competencies in data management and standardization, quantitative modeling, and regulatory science to develop tools that help de-risk decision making in AD drug development.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia, Melbourne, VIC, Australia.

Background: Iron is vital for metabolism but can act as a catalyst for oxidative damage. Elevated brain iron, determined from biomarkers of iron (CSF ferritin and quantitative susceptibility mapping MRI) and from post-mortem measurement of brain iron, has been associated with accelerated cognitive decline in multiple Alzheimer's disease (AD) clinical, cohorts. These findings supported the hypothesis that treatment with the brain-permeable iron chelator deferiprone may be associated clinical benefit in AD.

View Article and Find Full Text PDF

Background: Recent preclinical studies have revealed a significant reduction in amyloid-β plaques and pro-inflammatory cytokines in Alzheimer's disease (AD) mouse models following low-dose radiation therapy (LDRT). This phase II, multicenter, prospective, single-blinded, randomized controlled trial (NCT05635968, funding from Korea Hydro & Nuclear Power: Grant No. A21IP11) aims to investigate the efficacy and safety of whole-brain LDRT in patients with AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Elixiron Immunotherapeutics, Taipei, Taiwan.

Background: Microglial activation is one of the neuropathological hallmarks of Alzheimer's disease (AD). Evidence suggest that chronic activation of microglia cause neuroinflammation and neuronal injuries, contributing to cognitive impairment. Therefore, modulation of microglial pathway like CSF-1R represents an attractive therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!