Hybrid nanocomposite films for laser-activated tissue bonding.

J Biophotonics

Istituto di Fisica Applicata Nello Carrara, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy.

Published: November 2012

We report new advancements in the biomedical exploitation of plasmonic nanoparticles as an effective platform for the photothermal repair of biological tissue. Chitosan films are loaded with gold nanorods with intense optical absorption in the "therapeutic window" of deepest light penetration through the body, and then activated by near infrared laser excitation to give adhesion with adjacent connective tissues. The adhesion consists of 0.07 mm(2) welds of ~20 kPa tensile strength at the film/tissue interface, which are obtained by administration of pulses with duration in the hundreds of millisecond timescale from a diode laser at ~130 J cm(-2). We investigate the adhesive effect as a function of pulse power and duration and identify an optimal operative window to achieve effective and reproducible welds with minimal detrimental superheating. These results may prove valuable to standardize laser bonding techniques and meet current needs for new knowledge which is urged by the penetration of nanotechnology into biomedical optics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.201200115DOI Listing

Publication Analysis

Top Keywords

hybrid nanocomposite
4
nanocomposite films
4
films laser-activated
4
laser-activated tissue
4
tissue bonding
4
bonding report
4
report advancements
4
advancements biomedical
4
biomedical exploitation
4
exploitation plasmonic
4

Similar Publications

Layered Double Hydroxide Nanosheets Incorporated Hierarchical Hydrogen Bonding Polymer Networks for Transparent and Fire-Proof Ceramizable Coatings.

Nanomicro Lett

January 2025

Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361000, People's Republic of China.

In recent decades, annual urban fire incidents, including those involving ancient wooden buildings burned, transportation, and solar panels, have increased, leading to significant loss of human life and property. Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge. Herein, we present a transparent, low thickness, ceramifiable nanosystem coating composed of a highly adhesive base (poly(SSS-co-HEMA)), nanoscale layered double hydroxide sheets as ceramic precursors, and supramolecular melamine di-borate as an accelerator.

View Article and Find Full Text PDF

: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.

View Article and Find Full Text PDF

The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas.

View Article and Find Full Text PDF

Structure and Functional Characteristics of Novel Polyurethane/Ferrite Nanocomposites with Antioxidant Properties and Improved Biocompatibility for Vascular Graft Development.

Polymers (Basel)

January 2025

Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.

Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test.

View Article and Find Full Text PDF

Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!