Automatic segmentation and supervised learning-based selection of nuclei in cancer tissue images.

Cytometry A

Optical Microscopy and Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA.

Published: September 2012

AI Article Synopsis

  • * Manual analysis is too slow and subjective, so a workflow was developed that uses automatic segmentation and artificial neural networks to select the best nuclei from images containing many more than needed.
  • * The method demonstrated strong accuracy in distinguishing between normal and cancerous breast tissues by analyzing the positioning of the HES5 gene, with results closely matching those from manual analysis.

Article Abstract

Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362837PMC
http://dx.doi.org/10.1002/cyto.a.22097DOI Listing

Publication Analysis

Top Keywords

automatic segmentation
8
cell nuclei
8
nuclei
7
segmentation supervised
4
supervised learning-based
4
learning-based selection
4
selection nuclei
4
nuclei cancer
4
cancer tissue
4
tissue images
4

Similar Publications

Deep learning-based multiclass segmentation in aneurysmal subarachnoid hemorrhage.

Front Neurol

December 2024

CLAIM - Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.

Introduction: Radiological scores used to assess the extent of subarachnoid hemorrhage are limited by intrarater and interrater variability and do not utilize all available information from the imaging. Image segmentation enables precise identification and delineation of objects or regions of interest and offers the potential for automatization of score assessments using precise volumetric information. Our study aims to develop a deep learning model that enables automated multiclass segmentation of structures and pathologies relevant for aneurysmal subarachnoid hemorrhage outcome prediction.

View Article and Find Full Text PDF

Purpose: The relationship between retinal morphology, as assessed by optical coherence tomography (OCT), and retinal function in microperimetry (MP) has not been well studied, despite its increasing importance as an essential functional endpoint for clinical trials and emerging therapies in retinal diseases. Normative databases of healthy ageing eyes are largely missing from literature.

Methods: Healthy subjects above 50 years were examined using two MP devices, MP-3 (NIDEK) and MAIA (iCare).

View Article and Find Full Text PDF

Low Complexity Regions (LCRs) are segments of proteins with a low diversity of amino acid composition. These regions play important roles in proteins. However, annotations describing these functions are dispersed across databases and scientific literature.

View Article and Find Full Text PDF

Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent.

View Article and Find Full Text PDF

Ossification of the ligamentum flavum (OLF) is the main causative factor of spinal stenosis, but how to accurately and efficiently identify the ossification region is a clinical pain point and an urgent problem to be solved. Currently, we can only rely on the doctor's subjective experience for identification, with low efficiency and large error. In this study, a deep learning method is introduced for the first time into the diagnosis of ligamentum flavum ossificans, we proposed a lightweight, automatic and efficient method for identifying ossified regions, called CDUNeXt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!