The determination of mercury in crude oil and petroleum products is particularly difficult due to the volatile nature of both mercury and the matrix, which may lead to significant loss of the analyte. A simple extraction method for total mercury has been developed to determine total mercury in crude oil using cold vapor atomic fluorescence spectrometry. The homogenized crude oil sample was diluted to 5, 10, and 20 % (w/w) in toluene. The diluted crude oil samples were spiked with 10 and 40 μg/kg (w/w). The samples were extracted using an oxidant/acid solution, BrCl/HCl. The mercury was extracted into the aqueous phase; the ionic mercury was then reduced to volatile elemental mercury (Hg(0)) by stannous chloride (SnCl2). The mercury vapor was detected by Merlin cold vapor atomic fluorescence spectrometry at a 253.7-nm wavelength. The average recoveries for mercury in spiked diluted crude oil (10 and 40 μg/kg, w/w) were between 96 and 103 %, respectively, in 5 and 10 % spiked diluted crude oil. Whereas, low recoveries (<50 %) were recorded in 20 % diluted spiked crude oil. The method detection limit was calculated as t (0.01)(n - 1) × SD where t is the student's value for 99 % confidence level and standard deviation estimate with n - 1 degrees of freedom. The method detection limit was found to be 0.38 μg/kg based on 5 g of diluted crude oil sample. The method is sensitive enough to determine low levels of mercury in crude oil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-012-2819-2 | DOI Listing |
Langmuir
January 2025
Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology (China University of Geosciences), Wuhan 430074, China.
The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFLangmuir
January 2025
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China.
Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.
View Article and Find Full Text PDFWaste Manag Res
January 2025
Bohai Rim Energy Research Institute, Northeast Petroleum University, Daqing, Heilongjiang, China.
In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.
The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!