DNA methylation patterns have been recognised as cancer-specific markers with high potential for clinical applications. We aimed at identifying methylation variations that differentiate between breast cancers and other breast tissue entities to establish a signature for diagnosis. Candidate genomic loci were analysed in 117 fresh-frozen breast specimens, which included cancer, benign and normal breast tissues from patients as well as material from healthy individuals. A cancer-specific DNA methylation signature was identified by microarray analysis in a test set of samples (n = 52, p < 2.1 × 10(-4)) and its performance was assessed through bisulphite pyrosequencing in an independent validation set (n = 65, p < 1.9 × 10(-7)). The signature is associated with SFRP2 and GHSR genes, and exhibited significant hypermethylation in cancers. Normal-appearing breast tissues from cancer patients were also methylated at these loci but to a markedly lower extent. This occurrence of methylated DNA in normal breast tissue of cancer patients is indicative of an epigenetic field defect. Concerning diagnosis, receiver operating characteristic curves and the corresponding area under the curve (AUC) analysis demonstrated a very high sensitivity and specificity of 89.3 and 100 %, respectively, for the GHSR methylation pattern (AUC >0.99). To date, this represents the DNA methylation marker of the highest sensitivity and specificity for breast cancer diagnosis. Functionally, ectopic expression of GHSR in a cell line model reduced breast cancer cell invasion without affecting cell viability upon stimulation of cells with ghrelin. Our data suggest a link between epigenetic down-regulation of GHSR and breast cancer cell invasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10549-012-2197-z | DOI Listing |
J Gerontol A Biol Sci Med Sci
January 2025
Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
Deoxyribonucleic acid (DNA) methylation (DNAm) clocks estimate biological age according to DNA methylation. This study investigated the associations between measures of physical function and physical performance and ten DNAm clocks in the oldest-old in Singapore. The SG90 cohort included a subset of community-dwelling oldest-old from the Singapore Chinese Health Study (SCHS) and Singapore Longitudinal Ageing Study (SLAS).
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFPhysiol Genomics
January 2025
Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Plant epigenomics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
J Exp Bot
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!