RNA decoys: an emerging component of plant regulatory networks?

Plant Signal Behav

Monsanto Company; Chesterfield, MO, USA.

Published: September 2012

AI Article Synopsis

Article Abstract

The role of non-coding RNAs (ncRNAs), both short and long ncRNAs, in the regulation of gene expression has become evident in recent years. Non-coding RNA-based regulation is achieved through a variety of mechanisms; some are relatively well-characterized, while others are much less understood. MicroRNAs (miRNAs), a class of endogenous small RNAs, function as master regulators of gene expression in eukaryotic organisms. A notable, recently discovered role for long ncRNAs is that of miRNA decoys, also referred to as target mimics or sponges, in which long ncRNAs carry a short stretch of sequence sharing homology to miRNA-binding sites in endogenous targets. As a consequence, miRNA decoys are able to sequester and inactivate miRNA function. Engineered miRNA decoys are also efficacious and useful tools for studying gene function. We recently demonstrated that the potential of miRNA decoys to inactivate miRNAs in the model plants Arabidopsis thaliana and Nicotiana benthamiana is dependent on the level of sequence complementarity to miRNAs of interest. The flexibility of the miRNA decoy approach in sequence-dependent miRNA inactivation, backbone choice, ability to simultaneously inactivate multiple miRNAs, and more importantly, to achieve a desirable level of miRNA inactivation, makes it a potentially useful tool for crop improvement. This research addendum reports the functional extension of miRNA decoys from model plants to crops. Furthermore, endogenous miRNA decoys, first described in plants, have been proposed to play a significant role in regulating the transcriptome in eukaryotes. Using computational analysis, we have identified numerous endogenous sequences with potential miRNA decoy activity for conserved miRNAs in several plant species. Our data suggest that endogenous miRNA decoys can be widespread in plants and may be a component of the global gene expression regulatory network in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489658PMC
http://dx.doi.org/10.4161/psb.21299DOI Listing

Publication Analysis

Top Keywords

mirna decoys
28
long ncrnas
12
gene expression
12
mirna
12
potential mirna
8
model plants
8
mirna decoy
8
mirna inactivation
8
endogenous mirna
8
decoys
7

Similar Publications

Glucocorticoid excess causes bone loss due to decreased bone formation and increased bone resorption; miR-433-3p is a miRNA that negatively regulates bone formation in male mice by targeting Runx2 as well as RNAs involved in Wnt, protein kinase A and endogenous glucocorticoid signaling. To examine the impact of miR-433-3p on glucocorticoid-mediated bone loss, transgenic mice expressing a miR-433-3p tough decoy inhibitor in the osteoblast lineage were administered prednisolone via slow-release pellets. Bone loss was greater in control mice treated with prednisolone compared with miR-433-3p tough decoy mice due to higher osteoclast activity in the controls.

View Article and Find Full Text PDF

Noncoding RNA network crosstalk in organ fibrosis.

Cell Signal

December 2024

Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China. Electronic address:

Fibrosis is a process involving excessive accumulation of extracellular matrix components, the severity of which interferes with the function of the organ in question. With the advances in RNA sequencing and in-depth molecular studies, a large number of current studies have pointed out the irreplaceable role of non-coding RNAs (ncRNAs) in the pathophysiological development of organ fibrosis. Here, by summarizing the results of a large number of studies on the interactions between ncRNAs, some studies have found that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), among others, are able to act as sponges or decoy decoys for microRNAs (miRNAs), act as competing endogenous RNAs (ceRNAs) to regulate the expression of miRNAs, and subsequently act on different mRNA targets, playing a role in the development of fibrosis in a wide variety of organs, including the heart, liver, kidneys, and spleen.

View Article and Find Full Text PDF

Regulatory role of lncMD1 in goat skeletal muscle satellite cell differentiation via miR-133a-3p and miR-361-3p targeting.

Int J Biol Macromol

November 2024

College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China. Electronic address:

Skeletal muscle satellite cells (SMSCs) are pivotal in skeletal muscle development and are influenced by numerous regulatory factors. This study focuses on the regulatory and functional mechanism roles of lncMD1, a muscle-specific long non-coding RNA, in the proliferation and differentiation of goat SMSCs. Employing in vitro cultured goat SMSCs, this study demonstrated that lncMD1, functions as a decoy for miR-133a-3p and miR-361-3p.

View Article and Find Full Text PDF

Regulatory RNAs: role as scaffolds assembling protein complexes and their epigenetic deregulation.

Explor Target Antitumor Ther

July 2024

Agrofood Department, National Research Council, CNR-ISPA, 73100 Lecce, Italy.

Recently, new data have been added to the interaction between non-coding RNAs (ncRNAs) and epigenetic machinery. Epigenetics includes enzymes involved in DNA methylation, histone modifications, and RNA modifications, and mechanisms underlying chromatin structure, repressive states, and active states operating in transcription. The main focus is on long ncRNAs (lncRNAs) acting as scaffolds to assemble protein complexes.

View Article and Find Full Text PDF

Skeletal muscle satellite cells (SMSCs), a type of myogenic stem cell, play a pivotal role in postnatal muscle regeneration and repair in animals. Circular RNAs (circRNAs) are a distinct class of non-coding RNA molecules capable of regulating muscle development by modulating gene expression, acting as microRNAs, or serving as protein decoys. In this study, we identified circ_14820, an exonic transcript derived from adenosine triphosphatase family protein 2 (ATAD2), through initial RNA-Seq analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!