Background: We used a large population-based data set to create a clinical decision support system (CDSS) for real-time estimation of overall survival (OS) among colon cancer (CC) patients. Patients with CC diagnosed between 1969 and 2006 were identified from the Surveillance Epidemiology and End Results (SEER) registry. Low- and high-risk cohorts were defined. The tenfold cross-validation assessed predictive utility of the machine-learned Bayesian belief network (ml-BBN) model for clinical decision support (CDS).

Methods: A data set consisting of 146,248 records was analyzed using ml-BBN models to provide CDS in estimating OS based on prognostic factors at 12-, 24-, 36-, and 60-month post-treatment follow-up.

Results: Independent prognostic factors in the ml-BBN model included age, race; primary tumor histology, grade and location; Number of primaries, AJCC T stage, N stage, and M stage. The ml-BBN model accurately estimated OS with area under the receiver-operating-characteristic curve of 0.85, thereby improving significantly upon existing AJCC stage-specific OS estimates. Significant differences in OS were found between low- and high-risk cohorts (odds ratios for mortality: 17.1, 16.3, 13.9, and 8.8 for 12-, 24-, 36-, and 60-month cohorts, respectively).

Conclusions: A CDSS was developed to provide individualized estimates of survival in CC. This ml-BBN model provides insights as to how disease-specific factors influence outcome. Time-dependent, individualized mortality risk assessments may inform treatment decisions and facilitate clinical trial design.

Download full-text PDF

Source
http://dx.doi.org/10.1245/s10434-012-2555-4DOI Listing

Publication Analysis

Top Keywords

ml-bbn model
16
clinical decision
12
decision support
12
survival colon
8
colon cancer
8
bayesian belief
8
belief network
8
data set
8
low- high-risk
8
high-risk cohorts
8

Similar Publications

Unanswered questions remain in determining which high-risk node-negative colon cancer (CC) cohorts benefit from adjuvant therapy and how it may differ in an equal access population. Machine-learned Bayesian Belief Networks (ml-BBNs) accurately estimate outcomes in CC, providing clinicians with Clinical Decision Support System (CDSS) tools to facilitate treatment planning. We evaluated ml-BBNs ability to estimate survival and recurrence in CC.

View Article and Find Full Text PDF

Background: We used a large population-based data set to create a clinical decision support system (CDSS) for real-time estimation of overall survival (OS) among colon cancer (CC) patients. Patients with CC diagnosed between 1969 and 2006 were identified from the Surveillance Epidemiology and End Results (SEER) registry. Low- and high-risk cohorts were defined.

View Article and Find Full Text PDF

Background: Clostridium difficile (C-Diff) infection following colorectal resection is an increasing source of morbidity and mortality.

Objective: We sought to determine if machine-learned Bayesian belief networks (ml-BBNs) could preoperatively provide clinicians with postoperative estimates of C-Diff risk.

Methods: We performed a retrospective modeling of the Nationwide Inpatient Sample (NIS) national registry dataset with independent set validation.

View Article and Find Full Text PDF

We previously demonstrated that IgG responses to a panel of 126 prostate tissue-associated antigens are common in patients with prostate cancer. In the current report we questioned whether changes in IgG responses to this panel might be used as a measure of immune response, and potentially antigen spread, following prostate cancer-directed immune-active therapies. Sera were obtained from prostate cancer patients prior to and three months following treatment with androgen deprivation therapy (n = 34), a poxviral vaccine (n = 31), and a DNA vaccine (n = 21).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!