A low cost, low-temperature processable, highly efficient nickel sulfide counter electrode is demonstrated. Using the tailored, preformed nickel sulfide nanoparticles and electrostatic self-assembly, a novel counter electrode was fabricated that exceeded the efficiency of a conventional Pt-based cell.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc34559eDOI Listing

Publication Analysis

Top Keywords

nickel sulfide
12
electrostatic self-assembly
8
sulfide nanoparticles
8
counter electrode
8
employing electrostatic
4
self-assembly tailored
4
tailored nickel
4
nanoparticles quasi-solid-state
4
quasi-solid-state dye-sensitized
4
dye-sensitized solar
4

Similar Publications

The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of HS and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics.

View Article and Find Full Text PDF

Constructing fast electron transfer pathways and abundant electro-active sites is an effective strategy to improve the oxygen evolution reaction (OER) performance of catalysts. Herein, structural engineering and dual-phase engineering were employed to construct a NiS nanoparticle-encapsulated MOF configured with a pseudo-neuronal structure (NiS/MOF/HT). It was found that the pseudo-neuronal structure, constructed with a carbon nanohorn (CNH) and carbon nanotube (CNT), provided fast electron transfer pathways and abundant exposed active sites.

View Article and Find Full Text PDF

It is of great significance for the development of hydrogen energy technology by exploring the new-type and high-efficiency electrocatalysts (such as single atom catalysts (SACs)) for water splitting. In this paper, by combining interface engineering and doping engineering, a unique single atom iron (Fe)-doped carbon-coated nickel sulfide (NiS) quantum wires (NiS@Fe-SACs) is prepared as a high-performance bi-functional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Theoretical calculation and experimental results show that the addition of atomic Fe species can effectively adjust the electronic structure of sulfide, the interfacial electron transfer modulates the d-band center position, optimizing the transient state of the catalytic process and adsorption energy of hydrogen/oxygen intermediates, and greatly accelerates the kinetics of HER and OER.

View Article and Find Full Text PDF
Article Synopsis
  • A new method for hydrogen production combines the hydrogen evolution reaction (HER) with the urea oxidation reaction (UOR), enhancing energy efficiency.
  • Researchers developed a simple technique to create nanoporous nickel sulfide (NiS) and nickel hexacyanoferrate (NiHCF) nanocubes on nickel foam without needing extra nickel sources, improving the process.
  • This innovative system demonstrates impressive catalytic performance, achieving a low cell voltage for hydrogen production, offering a sustainable way to produce hydrogen from urea-rich wastewater and potentially reducing carbon emissions.
View Article and Find Full Text PDF

Interface Electron Transfer Direction-Tuned Urea Electrooxidation Over Multi-Interface Nickel Sulfide Heterojunctions.

Small

December 2024

Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.

Article Synopsis
  • The study introduces two types of nickel sulfide (NiS) heterojunctions embedded in nitrogen-doped carbon nanotubes that act as effective catalysts for urea oxidation reactions.
  • The performance of these catalysts is enhanced by adjusting the direction of electron transfer at their interfaces, with one configuration achieving a significant current density, indicating improved efficiency in the reaction process.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!