EB1 is key factor in the organization of the microtubule cytoskeleton by binding to the plus-ends of microtubules and serving as a platform for a number of interacting proteins (termed +TIPs) that control microtubule dynamics. Together with its direct binding partner adenomatous polyposis coli (APC), EB1 can stabilize microtubules. Here, we show that Amer2 (APC membrane recruitment 2), a previously identified membrane-associated APC-binding protein, is a direct interaction partner of EB1 and acts as regulator of microtubule stability together with EB1. Amer2 binds to EB1 via specific (S/T)xIP motifs and recruits it to the plasma membrane. Coexpression of Amer2 and EB1 generates stabilized microtubules at the plasma membrane, whereas knockdown of Amer2 leads to destabilization of microtubules. Knockdown of Amer2, APC, or EB1 reduces cell migration, and morpholino-mediated down-regulation of Xenopus Amer2 blocks convergent extension cell movements, suggesting that the Amer2-EB1-APC complex regulates cell migration by altering microtubule stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471750PMC
http://dx.doi.org/10.1074/jbc.M112.385393DOI Listing

Publication Analysis

Top Keywords

microtubule stability
12
cell migration
12
eb1
8
adenomatous polyposis
8
polyposis coli
8
coli apc
8
apc eb1
8
amer2 apc
8
plasma membrane
8
knockdown amer2
8

Similar Publications

Stress causes lipid droplet accumulation in chondrocytes by impairing microtubules.

Osteoarthritis Cartilage

December 2024

Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:

Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis (OA). Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).

View Article and Find Full Text PDF

A Microtubule-Associated Protein Functions in Preventing Oocytes from Evading the Spindle Assembly Checkpoint.

Adv Sci (Weinh)

December 2024

Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.

Aneuploidy eggs are a common cause of human infertility, spontaneous abortion, or trisomy syndromes. The spindle assembly checkpoint (SAC) plays a crucial role in preventing aneuploidy in oocytes, yet it is unclear if additional mechanisms exist to ensure oocyte adherence to this checkpoint. It is now revealed that the microtubule-associated protein NUSAP can prevent oocytes from evading the SAC and regulate the speed of the cell cycle.

View Article and Find Full Text PDF

Esophageal cancer is a major malignancy with a high incidence and poor prognosis. To elucidate the mechanisms underlying its progression, particularly with respect to cell division and spindle orientation, we investigated the role of m6A modifications and the centrosomal protein CEP170. Using m6A-seq and RNA-seq of esophageal cancer tissues and adjacent normal tissues, we identified significant alterations in m6A modifications and gene expression, highlighting the upregulation and m6A enrichment of CEP170 in tumor tissues.

View Article and Find Full Text PDF

Full-length direct RNA sequencing uncovers stress granule-dependent RNA decay upon cellular stress.

Elife

December 2024

Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States.

Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!