Transportation of de novo synthesized jasmonoyl isoleucine in tomato.

Phytochemistry

Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.

Published: November 2012

In plants, jasmonic acid (JA) and its derivatives are thought to be involved in mobile forms of defense against biotic and abiotic stresses. In this study, the distal transport of JA-isoleucine (JA-Ile) that is synthesized de novo in response to leaf wounding in tomato (Solanum lycopersicum) plants was investigated. JA-[¹³C₆]Ile was recovered in distal untreated leaves after wounded leaves were treated with [¹³C₆]Ile. However, as [¹³C₆]Ile was also recovered in the distal untreated leaves, whether JA-Ile was synthesized in the wounded or in the untreated leaves was unclear. Hence, stem exudates were analyzed to obtain more detailed information. When [¹³C₆]Ile and [²H₆]JA were applied separately into the wounds on two different leaves, JA-[¹³C₆]Ile and [²H₆]JA-Ile were detected in the stem exudates but [²H₆]JA-[¹³C₆]Ile was not, indicating that JA was conjugated with Ile in the wounded leaf and that the resulting JA-Ile was then transported into systemic tissues. The [²H₃]JA-Ile that was applied exogenously to the wounded tissues reached distal untreated leaves within 10 min. Additionally, applying [²H₃]JA-Ile to the wounded leaves at concentrations of 10 and 60 nmol/two leaves induced the accumulation of PIN II, LAP A, and JAZ3 mRNA in the distal untreated leaves of the spr2 mutant S. lycopersicum plants. These results demonstrate the transportation of de novo synthesized JA-Ile and suggest that JA-Ile may be a mobile signal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2012.06.009DOI Listing

Publication Analysis

Top Keywords

untreated leaves
20
distal untreated
16
leaves
9
transportation novo
8
novo synthesized
8
ja-ile synthesized
8
lycopersicum plants
8
recovered distal
8
wounded leaves
8
stem exudates
8

Similar Publications

The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.

View Article and Find Full Text PDF

The market demand for baby leaf lettuce is constantly increasing, while safety has become one of the most important traits in determining consumer preference driven by human health hazards concerns. In this study, the performance of visible and near-infrared (vis/NIR) spectroscopy was tested in discriminating pesticide-free against pesticide-treated lettuce plants. Two commercial fungicides (mancozeb and fosetyl-al) and two insecticides (deltamethrin and imidacloprid) were applied as spray solutions at the recommended rates on baby leaf lettuce plants.

View Article and Find Full Text PDF

In this work, the atmospheric pressure air gliding arc discharge has been produced for the generation of plasma-activated water (PAW) and studying its effect on the chlorophyll retention and greenness of Tejpat () leaves. The discharge is characterized via electrical and optical methods to calculate the electron excitation temperature (1.38 eV) and density ( cm) of the plasma.

View Article and Find Full Text PDF

Potential reuse of greywater for irrigation of tomato () plants and its effect on plants growth and soil.

Int J Phytoremediation

December 2024

Department of Nutrition and Food Processing, Al‑Huson University College, Al-Balqa Applied University, Irbid, Jordan.

The goal of this study is to examine the reactions of tomato () plants to both untreated greywater and treated greywater filtered through a zeolite. In a randomized block arrangement, tomato plants were irrigated with greywater, treated greywater, or tap water. Number and total fecal coliforms were found in soil, tomato leaves, and fruits.

View Article and Find Full Text PDF

Background: Plants utilize a variety of mechanisms to adapt to fluctuations in phosphorus (P) availability. Potatoes, in comparison to other crops, often display reduced phosphorus use efficiency (PUE) due to their underdeveloped root systems; therefore, understanding the mechanisms underlying PUE is critical for improving it. This study aimed to evaluate the morphological and physiological responses of potatoes to different P levels, with a focus on root system alterations and PUE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!