Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.

BMC Complement Altern Med

Laboratory of Information Access and Synthesis of TCM Four Diagnosis, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

Published: August 2012

Background: In Traditional Chinese Medicine (TCM), the lip diagnosis is an important diagnostic method which has a long history and is applied widely. The lip color of a person is considered as a symptom to reflect the physical conditions of organs in the body. However, the traditional diagnostic approach is mainly based on observation by doctor's nude eyes, which is non-quantitative and subjective. The non-quantitative approach largely depends on the doctor's experience and influences accurate the diagnosis and treatment in TCM. Developing new quantification methods to identify the exact syndrome based on the lip diagnosis of TCM becomes urgent and important. In this paper, we design a computer-assisted classification model to provide an automatic and quantitative approach for the diagnosis of TCM based on the lip images.

Methods: A computer-assisted classification method is designed and applied for syndrome diagnosis based on the lip images. Our purpose is to classify the lip images into four groups: deep-red, red, purple and pale. The proposed scheme consists of four steps including the lip image preprocessing, image feature extraction, feature selection and classification. The extracted 84 features contain the lip color space component, texture and moment features. Feature subset selection is performed by using SVM-RFE (Support Vector Machine with recursive feature elimination), mRMR (minimum Redundancy Maximum Relevance) and IG (information gain). Classification model is constructed based on the collected lip image features using multi-class SVM and Weighted multi-class SVM (WSVM). In addition, we compare SVM with k-nearest neighbor (kNN) algorithm, Multiple Asymmetric Partial Least Squares Classifier (MAPLSC) and Naïve Bayes for the diagnosis performance comparison. All displayed faces image have obtained consent from the participants.

Results: A total of 257 lip images are collected for the modeling of lip diagnosis in TCM. The feature selection method SVM-RFE selects 9 important features which are composed of 5 color component features, 3 texture features and 1 moment feature. SVM, MAPLSC, Naïve Bayes, kNN showed better classification results based on the 9 selected features than the results obtained from all the 84 features. The total classification accuracy of the five methods is 84%, 81%, 79% and 81%, 77%, respectively. So SVM achieves the best classification accuracy. The classification accuracy of SVM is 81%, 71%, 89% and 86% on Deep-red, Pale Purple, Red and lip image models, respectively. While with the feature selection algorithm mRMR and IG, the total classification accuracy of WSVM achieves the best classification accuracy. Therefore, the results show that the system can achieve best classification accuracy combined with SVM classifiers and SVM-REF feature selection algorithm.

Conclusions: A diagnostic system is proposed, which firstly segments the lip from the original facial image based on the Chan-Vese level set model and Otsu method, then extracts three kinds of features (color space features, Haralick co-occurrence features and Zernike moment features) on the lip image. Meanwhile, SVM-REF is adopted to select the optimal features. Finally, SVM is applied to classify the four classes. Besides, we also compare different feature selection algorithms and classifiers to verify our system. So the developed automatic and quantitative diagnosis system of TCM is effective to distinguish four lip image classes: Deep-red, Purple, Red and Pale. This study puts forward a new method and idea for the quantitative examination on lip diagnosis of TCM, as well as provides a template for objective diagnosis in TCM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522569PMC
http://dx.doi.org/10.1186/1472-6882-12-127DOI Listing

Publication Analysis

Top Keywords

classification accuracy
24
lip diagnosis
20
diagnosis tcm
20
lip image
20
feature selection
20
lip
16
features
13
based lip
12
lip images
12
best classification
12

Similar Publications

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

Vector-borne diseases pose a major worldwide health concern, impacting more than 1 billion people globally. Among various blood-feeding arthropods, mosquitoes stand out as the primary carriers of diseases significant in both medical and veterinary fields. Hence, comprehending their distinct role fulfilled by different mosquito types is crucial for efficiently addressing and enhancing control measures against mosquito-transmitted diseases.

View Article and Find Full Text PDF

Polarization-sensitive optical coherence tomography (PS-OCT) measures the polarization state of backscattered light from tissues and provides valuable insights into the birefringence properties of biological tissues. Contrastive unpaired translation (CUT) was used in this study to generate a synthetic PS-OCT image from a single OCT image. The challenges related to extensive data requirements relying on labeled datasets using only pixel-wise correlations that make it difficult to efficiently regenerate the periodic patterns observed in PS-OCT images were addressed.

View Article and Find Full Text PDF

Utility of a novel scoring system for difficulty of pure laparoscopic hepatectomy for intrahepatic cholangiocarcinoma.

Sci Rep

December 2024

Department of General Surgery, Cancer center, Division of Hepatobiliary and Pancreatic Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang Province, China.

Despite the growing adoption of laparoscopic hepatectomy (LH) for intrahepatic cholangiocarcinoma (ICC), there is no scoring system available designed to evaluate its surgical complexity. This paper aims to introduce a novel difficulty scoring system (DSS), designated as the Wei-DSS, exclusively tailored to assess the surgical difficulty of pure LH for ICC. We retrospectively collected clinical data from ICC patients who underwent pure LH at our institution, spanning from November 2018 to May 2024.

View Article and Find Full Text PDF

EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.

Sci Rep

December 2024

School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou, 434100, Hubei, China.

Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!