Cognitive enhancement by pharmacological and behavioral interventions: the murine Down syndrome model.

Biochem Pharmacol

Institute of Pharmacology, University of Zurich and, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

Published: October 2012

The cognitive deficits in Down syndrome (DS) are attributed to an excessive hippocampal inhibition, which obstructs neuronal plasticity and normal learning and memory, a view which is largely based on studies of Ts65Dn mice, the best characterized mouse model of DS. The cognitive behavioral deficits of Ts65Dn mice can be rescued by reducing GABAergic inhibition, most selectively by partial inverse agonists acting on α(5) GABA-A receptors, of which one compound has recently entered clinical trials in DS. Most remarkably, the improved cognitive performance of Ts65Dn can persist for weeks and months after cessation of drug treatment, as demonstrated for the non-specific GABA antagonist pentylenetetrazole. The Alzheimer drugs, memantine and donepezil largely fail to show any benefit. Finally, repeated non-invasive sensory stimulation such as over-training or enriching the environment, are able to enhance the learning performance which underlines the reversibility of an obstructed neuronal plasticity in Ts65Dn mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2012.06.028DOI Listing

Publication Analysis

Top Keywords

ts65dn mice
12
model cognitive
8
neuronal plasticity
8
cognitive
4
cognitive enhancement
4
enhancement pharmacological
4
pharmacological behavioral
4
behavioral interventions
4
interventions murine
4
murine syndrome
4

Similar Publications

Approximately one in every 800 children is born with the severe aneuploid condition of Down Syndrome, a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype and therefore therapeutic interventions are limited.

View Article and Find Full Text PDF

Infantile Spasms in Pediatric Down Syndrome: Potential Mechanisms Driving Therapeutic Considerations.

Children (Basel)

December 2024

Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches.

View Article and Find Full Text PDF

Introduction: Down syndrome (DS) is associated with difficulties with feeding during infancy and childhood. Weaning, or transitioning from nursing to independent deglutition, requires developmental progression in tongue function. However, little is known about whether postnatal tongue muscle maturation is impacted in DS.

View Article and Find Full Text PDF

Down syndrome (DS) is a common genetic condition affecting people worldwide. It involves cognitive disabilities for which there are no drug therapies. The Ts65Dn mouse model of DS shows cognitive impairment due to a reduction in neuron number and connectivity as well as excessive neuronal activity, as GABA antagonist treatment restores memory in these mice.

View Article and Find Full Text PDF

Background/objectives: Down syndrome (DS) is the most common cause of early-onset Alzheimer's disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake levels of choline. While lower circulating choline levels correlate with worse pathological measures in AD patients, choline status and intake in DS is widely understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!