Redox control of cardiac excitability.

Antioxid Redox Signal

Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA.

Published: February 2013

Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526898PMC
http://dx.doi.org/10.1089/ars.2011.4234DOI Listing

Publication Analysis

Top Keywords

cardiac excitability
16
cardiac
9
ros
8
ros synthesized
8
antioxidant defense
8
effects cardiac
8
ion channels
8
action potential
8
redox
6
excitability
6

Similar Publications

Multiscale feature enhanced gating network for atrial fibrillation detection.

Comput Methods Programs Biomed

January 2025

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, PR China. Electronic address:

Background And Objective: Atrial fibrillation (AF) is a significant cause of life-threatening heart disease due to its potential to lead to stroke and heart failure. Although deep learning-assisted diagnosis of AF based on ECG holds significance in clinical settings, it remains unsatisfactory due to insufficient consideration of noise and redundant features. In this work, we propose a novel multiscale feature-enhanced gating network (MFEG Net) for AF diagnosis.

View Article and Find Full Text PDF

Background: Chronic kidney disease is a global problem characterized by a progressive decrease in kidney function with associated symptoms. A better understanding of these symptoms could lead to the development of personalized strategies.

Objective: This systematic review aims to describe the clusters of symptoms in kidney failure and categorize them according to their time of onset and how disabling they are for patients.

View Article and Find Full Text PDF

The purpose of this study was to measure T and T relaxation times of NAD proton resonances in the downfield H MRS spectrum in human brain at 7 T in vivo and to assess the propagation of relaxation time uncertainty in NAD quantification. Downfield spectra from eight healthy volunteers were acquired at multiple echo times to measure T relaxation times, and saturation recovery data were acquired to measure T relaxation times. The downfield acquisition used a spectrally selective 90° sinc pulse for excitation centered at 9.

View Article and Find Full Text PDF

Imaging the entire cardiomyocyte network in entire small animal hearts at single cell resolution is a formidable challenge. Optical microscopy provides sufficient contrast and resolution in 2d, however fails to deliver non-destructive 3d reconstructions with isotropic resolution. It requires several invasive preparation steps, which introduce structural artefacts, namely dehydration, physical slicing and staining, or for the case of light sheet microscopy also clearing of the tissue.

View Article and Find Full Text PDF

Regulation of myocardial contraction as revealed by intracellular Ca measurements using aequorin.

J Physiol Sci

January 2025

Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, 105-8461, Tokyo, Japan.

Of the ions involved in myocardial function, Ca is the most important. Ca is crucial to the process that allows myocardium to repeatedly contract and relax in a well-organized fashion; it is the process called excitation-contraction coupling. In order, therefore, for accurate comprehension of the physiology of the heart, it is fundamentally important to understand the detailed mechanism by which the intracellular Ca concentration is regulated to elicit excitation-contraction coupling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!