Compelling evidence suggests that vitamin D3 insufficiency may contribute causally to multiple sclerosis (MS) risk. Experimental autoimmune encephalomyelitis (EAE) research firmly supports this hypothesis. Vitamin D3 supports 1,25-dihydroxyvitamin D3 (1,25-[OH]2D3) synthesis in the CNS, initiating biological processes that reduce pathogenic CD4+ T cell longevity. MS is prevalent in Sardinia despite high ambient UV irradiation, challenging the vitamin D-MS hypothesis. Sardinian MS patients frequently carry a low Ifng expresser allele, suggesting that inadequate IFN-γ may undermine vitamin D3-mediated inhibition of demyelinating disease. Testing this hypothesis, we found vitamin D3 failed to inhibit EAE in female Ifng knockout (GKO) mice, unlike wild-type mice. The two strains did not differ in Cyp27b1 and Cyp24a1 gene expression, implying equivalent vitamin D3 metabolism in the CNS. The 1,25-(OH)2D3 inhibited EAE in both strains, but 2-fold more 1,25-(OH)2D3 was needed in GKO mice, causing hypercalcemic toxicity. Unexpectedly, GKO mice had very low Vdr gene expression in the CNS. Injecting IFN-γ intracranially into adult mice did not increase Vdr gene expression. Correlating with low Vdr expression, GKO mice had more numerous pathogenic Th1 and Th17 cells in the CNS, and 1,25-(OH)2D3 reduced these cells in GKO and wild-type mice without altering Foxp3+ regulatory T cells. Thus, the Ifng gene was needed for CNS Vdr gene expression and vitamin D3-dependent mechanisms that inhibit EAE. Individuals with inadequate Ifng expression may have increased MS risk despite high ambient UV irradiation because of low Vdr gene expression and a high encephalitogenic T cell burden in the CNS.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1102925DOI Listing

Publication Analysis

Top Keywords

gene expression
24
vdr gene
20
gko mice
16
low vdr
12
ifng gene
8
expression
8
vitamin
8
expression vitamin
8
cell burden
8
experimental autoimmune
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!