Mitochondrial performance in heat acclimation--a lesson from ischemia/reperfusion and calcium overload insults in the heart.

Am J Physiol Regul Integr Comp Physiol

Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel.

Published: October 2012

Long-term heat acclimation (LTHA; 30 days, 34°C) causes phenotypic adaptations that render protection against ischemic/reperfusion insult (I/R, 30 min global ischemia and 40 min reperfusion) via heat acclimation-mediated cross-tolerance (HACT) mechanisms. Short-term acclimation (STHA, 2 days, 34 °C), in contrast, is characterized by cellular perturbations, leading to increased susceptibility to insults. Here, we tested the hypothesis that enhanced mitochondrial respiratory function is part of the acclimatory repertoire and that the 30-day regimen is required for protection via HACT. We subjected isolated hearts and mitochondria from controls (C), STHA, or LTHA rats to I/R, hypoxia/reoxygenation, or Ca2+ overload insults. Mitochondrial function was assessed by measuring O2 consumption, membrane potential (ΔΨm), mitochondrial Ca2+ ([Ca2+]m), ATP production, respiratory chain complex activities, and molecular markers of mitochondrial biogenesis. Our results, combining physiological and biochemical parameters, confirmed that mitochondria from LTHA rats subjected to insults, in contrast to C, preserve respiratory functions (e.g., upon I/R, C mitochondria fueled by glutamate-malate, demonstrated decreases of 81%, 13%, 25%, and 50% in O2/P ratio, ATP production, ΔΨm, and complex I activity, respectively, whereas the corresponding LTHA parameters remained unchanged). STHA mitochondria maintained ΔΨm but did not preserve ATP production. LTHA [Ca2+]m was significantly higher than that of C and STHA and was not affected by the hypoxia/reoxygenation protocol compared with C. Enhanced mitochondrial biogenesis markers, switched-on during STHA coincidentally with enhanced membrane integrity (ΔΨm), were insufficient to confer intact respiratory function upon insult. LTHA was required for respiratory complex I adaptation and HACT. Stabilized higher basal [Ca2+]m and attenuated Ca2+ overload are likely connected to this adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00155.2012DOI Listing

Publication Analysis

Top Keywords

atp production
12
overload insults
8
enhanced mitochondrial
8
respiratory function
8
ltha rats
8
ca2+ overload
8
mitochondrial biogenesis
8
mitochondrial
6
ltha
6
stha
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!