Rh(III)-TsDPEN, an immobilized analog of the well-known [Cp*Rh(bpy)(H(2)O)](2+) was evaluated as a heterogeneous, recyclable regeneration catalyst for reduced oxidoreductase cofactors [NAD(P)H]. Repeated use of this catalyst was established and the catalytic properties were initially investigated. Apparently, Rh(III)-TsDPEN is prone to severe diffusion limitations, necessitating further developments. Overall, a promising concept for chemoenzymatic redox catalysis is proposed, which may overcome some of the current limitations such as catalyst cost and incompatibility of Rh with some biocatalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268897 | PMC |
http://dx.doi.org/10.3390/molecules17089835 | DOI Listing |
Nat Metab
January 2025
Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Centro de Engenharia Genética e Biologia Molecular (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
Unlabelled: is an anaerobic and thermophilic bacterium that has been genetically engineered for ethanol production at very high yields. However, the underlying reactions responsible for electron flow, redox equilibrium, and how they relate to ethanol production in this microbe are not fully elucidated. Therefore, we performed a series of genetic manipulations to investigate the contribution of hydrogenase genes to high ethanol yield, generating evidence for the importance of hydrogen-reacting enzymes in ethanol production.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.
PER: and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation.
View Article and Find Full Text PDFPLoS One
December 2024
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Okhla, New Delhi, India.
Background: Multiple sclerosis (MS) is a complex neurological disorder marked by neuroinflammation and demyelination. Understanding its molecular basis is vital for developing effective treatments. This study aims to elucidate the molecular progression of MS using multiomics and network-based approach.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China.
Enzyme catalysis is a promising method for producing chiral chemicals with high stereoselectivity under mild conditions. However, the traditional batch reaction suffers from low enzyme stability, low cofactor recycling, and poor enzyme reusability. Here, we present a continuous-flow method using coimmobilized dual enzymes for the synthesis of chiral γ-/δ-lactones, which are widely used in fragrances and flavors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!