A famous milestone in the vaccine field has been the first successful vaccination against smallpox, in 1798, by Edward Jenner. Using the vaccinia cowpox virus, Jenner was able to protect vaccinees from variola or smallpox. The Modified Virus Ankara (MVA) poxvirus strain has been one of the vaccines subsequently developed to prevent smallpox infection and was selected by the US government in their Biodefense strategy. Progress in molecular biology and immunology associated with MVA infection has led to the development of MVA as vaccine platform, both in the field of preventive and therapeutic vaccines. This later class of therapeutics has witnessed growing interest that has translated into an increasing number of vaccine candidates reaching the clinics. Among those, MVA-based therapeutic vaccines have addressed four major chronic infections including viral hepatitis, AIDS, human papillomavirus-linked pathologies and tuberculosis. Clinical trials encompass phase 1 and 2 and have started to show significant results and promises.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656061 | PMC |
http://dx.doi.org/10.4161/hv.21689 | DOI Listing |
The history of the Croatian pharmaceutical company PLIVA from the very beginning to the status of a recognisable European and global player is described. Special attention is paid to PLIVA's cooperation with the Croatian Nobel laureate Vladimir Prelog and the invention of the proprietary antibiotic azithromycin. The antibiotic was commercialised in cooperation with the US-based company Pfizer.
View Article and Find Full Text PDFSince the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the need for an effective vaccine has appeared crucial for stimulating immune system responses to produce humoral/cellular immunity and activate immunological memory. It has been demonstrated that SARS-CoV-2 variants escape neutralizing immunity elicited by previous infection and/or vaccination, leading to new infection waves and cases of reinfection. The study aims to gain into cases of reinfections, particularly infections and/or vaccination-induced protection.
View Article and Find Full Text PDFSci Rep
January 2025
The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
Cell-penetrating peptides (CPPs) have been shown to have superior material transport ability because poor infiltration of activated lymphocytes into tumors is one of the crucial factors limiting the therapeutic effect of tumor immunotherapy. Numerous studies have investigated the potential application of CPPs in tumor immunotherapy. This review delves into the crucial role that CPPs play in enhancing tumor immunotherapy, emphasizing their impact on various immunotherapy strategies, such as cytokine therapy, adoptive cell therapy, cancer vaccines, and immune checkpoint inhibitors.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
Tumor-derived exosomes (TDEs) mediate oncogenic communication, which modifies target cells to reinforce a tumor-promoting microenvironment. TDEs support cancer progression by suppressing anti-tumor immune responses, promoting metastasis, and conferring drug resistance. Thus, targeting TDEs could improve the efficacy of anti-cancer treatments and control metastasis.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
The newly emerged variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) demonstrate resistance to present therapeutic antibodies as well as the capability to evade vaccination-elicited antibodies. JN.1 sublineages were demonstrated as one of the most immune-evasive variants, showing higher neutralization resistance compared to XBB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!