The metabotropic glutamate receptor 1 (mGluR1), a class C member of the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor family, is a constitutive dimer that regulates excitatory neurotransmission. We investigated the role of homodimer formation in mGluR1 activation by examining activation-dependent inter- and intrasubunit conformational changes by fluorescence resonance energy transfer (FRET). We inserted yellow and cyan fluorescent proteins in the second intracellular loop and at the carboxyl terminus of mGluR1 to act as FRET sensors and expressed these proteins in human embryonic kidney 293 cells. Agonist-dependent activation of these mGluR1 chimeras rapidly increased the intersubunit FRET, suggesting rapid movement of the subunits relative to each other. After intersubunit movement, the intrasubunit FRET decreased, reflecting conformational changes within a subunit. Cotransfection of chimeric receptor subunits that were capable or incapable of G protein coupling revealed that only a single subunit assumes an active state in an mGluR1 receptor dimer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scisignal.2002720 | DOI Listing |
bioRxiv
September 2024
Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
Alzheimer's disease (AD) is caused by the assembly of amyloid-beta (Aβ) peptides into oligomers and fibrils. Endogenous Aβ aggregation may be assisted by cell membranes, which can accelerate the nucleation step enormously, but knowledge of membrane-assisted aggregation is still very limited. Here we used extensive MD simulations to structurally and energetically characterize key intermediates along the membrane-assisted aggregation pathways of Aβ40.
View Article and Find Full Text PDFMol Biol Cell
October 2024
Biophysics Program, Stanford University, Stanford, CA 94305.
The key bacterial cell division protein FtsZ can adopt multiple conformations, and prevailing models suggest that transitions of FtsZ subunits from the closed to open state are necessary for filament formation and stability. Using all-atom molecular dynamics simulations, we analyzed state transitions of FtsZ as a monomer, dimer, and hexamer. We found that monomers can adopt intermediate states but preferentially adopt a closed state that is robust to forced reopening.
View Article and Find Full Text PDFJ Biol Chem
May 2024
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Electronic address:
We describe molecular-level functional changes in the α4β2 nicotinic acetylcholine receptor by a leucine residue insertion in the M2 transmembrane domain of the α4 subunit associated with sleep-related hyperkinetic epilepsy. Measurements of agonist-elicited single-channel currents reveal the primary effect is to stabilize the open channel state, while the secondary effect is to promote reopening of the channel. These dual effects prolong the durations of bursts of channel openings equally for the two major stoichiometric forms of the receptor, (α4)(β2) and (α4)(β2), indicating the functional impact is independent of mutant copy number per receptor.
View Article and Find Full Text PDFStructure
June 2024
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan. Electronic address:
Group I chaperonins are dual heptamer protein complexes that play significant roles in protein homeostasis. The structure and function of the Escherichia coli chaperonin are well characterized. However, the dynamic properties of chaperonins, such as large ATPase-dependent conformational changes by binding of lid-like co-chaperonin GroES, have made structural analyses challenging, and our understanding of these changes during the turnover of chaperonin complex formation is limited.
View Article and Find Full Text PDFNPJ Vaccines
July 2023
The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK.
Chemical cross-linking is used to stabilize protein structures with additional benefits of pathogen and toxin inactivation for vaccine use, but its use has been restricted by the potential for local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for inducing a biological outcome such as the elicitation of antibodies to conformationally sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its use as a vaccine antigen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!