Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solution-grown germanium (Ge) nanowires were tested as high capacity anodes in lithium ion (Li-ion) batteries. Nanowire films were formulated and cast as slurries with conductive carbon (7:1 Ge:C w/w), PVdF binder and 1.0 M LiPF(6) dissolved in various solvents as electrolyte. The addition of fluorethylene carbonate (FEC) to the electrolyte was critical to achieving stable battery cycling and reversible capacities as high as 1248 mA h g(-1) after 100 cycles, which is close to the theoretical capacity of 1,384 mA h g(-1). Ge nanowire anodes also exhibited high rate capability, with reversible cycling above 600 mA h g(-1) for 1200 cycles at a rate of 1C. The batteries could also be discharged at 10C with a capacity of 900 mA h g(-1) when charged at 1C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am3010253 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!