A new mixed halide, Cs(2)HgI(2)Cl(2), which contains the highly polar tetrahedron of anion (HgI(2)Cl(2))(2-), has been designed and synthesized by reaction in solution. In its single crystal, the isolated (HgCl(2)I(2))(2-) groups are arranged to form chains. The chains are then further connected into a three-dimensional framework through the Cs atoms that occupy the empty spaces surrounded by halide atoms. All the polar (HgCl(2)I(2))(2-) groups align in such a way that gives a net polarization, leading it to show a phase matchable second harmonic generation (SHG) effect as strong as that of KH(2)PO(4) (KDP) based on the powder SHG measurement. It also displays excellent transparency in the range of 0.4-41 μm with relatively high thermal stability. A preliminary measurement indicates that its laser-induced damage threshold is about 83 MW/cm(2), about twice that of AgGaS(2). This study demonstrates that Cs(2)HgI(2)Cl(2) is a promising nonlinear optical material in the infrared region.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja3037299DOI Listing

Publication Analysis

Top Keywords

mixed halide
8
halide cs2hgi2cl2
8
nonlinear optical
8
optical material
8
material infrared
8
infrared region
8
hgcl2i22- groups
8
cs2hgi2cl2 molecular
4
molecular engineering
4
engineering nonlinear
4

Similar Publications

Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.

View Article and Find Full Text PDF

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.

View Article and Find Full Text PDF

Exploring Lysine Incorporation as a Strategy to Mitigate Postsynthetic Halide Exchange in Lead-Halide Hybrid Perovskites.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.

View Article and Find Full Text PDF

Addressing the challenges of the efficiency and stability of red perovskite nanocrystals is imperative for the successful deployment of these materials in displays and lighting applications. the structural dynamic changes of red perovskite quantum dots (PQDs) are explored using a flow chemistry system to solve the above hurdles. First, the ultrabright red-emitting PQDs of CsPb(Br,I) are achieved by adjusting ligand distribution (oleic acid and oleyamine) in combination with different flow rates and equivalence ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!