We report on a Raman microspectroscopic characterization of the inflammatory bowel diseases (IBD) Crohn's disease (CD) and ulcerative colitis (UC). Therefore, Raman maps of human colon tissue sections were analyzed by utilizing innovative chemometric approaches. First, support vector machines were applied to highlight the tissue morphology (=Raman spectroscopic histopathology). In a second step, the biochemical tissue composition has been studied by analyzing the epithelium Raman spectra of sections of healthy control subjects (n=11), subjects with CD (n=14), and subjects with UC (n=13). These three groups exhibit significantly different molecular specific Raman signatures, allowing establishment of a classifier (support-vector-machine). By utilizing this classifier it was possible to separate between healthy control patients, patients with CD, and patients with UC with an accuracy of 98.90%. The automatic design of both classification steps (visualization of the tissue morphology and molecular classification of IBD) paves the way for an objective clinical diagnosis of IBD by means of Raman spectroscopy in combination with chemometric approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.JBO.17.7.076030DOI Listing

Publication Analysis

Top Keywords

inflammatory bowel
8
bowel diseases
8
chemometric approaches
8
tissue morphology
8
healthy control
8
patients patients
8
raman
6
classification inflammatory
4
diseases raman
4
raman spectroscopic
4

Similar Publications

Background/aims: Active inflammatory bowel disease (IBD) increases the risk of pregnancy complications and contraceptive side effects, and contraceptive use may impact the clinical course of IBD. Although young people are at elevated risk for unintended pregnancy, those with IBD receive minimal disease-specific contraceptive guidance. We characterized perspectives and preferences on contraception and reproductive health counseling from young women with IBD.

View Article and Find Full Text PDF

Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease.

Bioact Mater

April 2025

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.

Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).

View Article and Find Full Text PDF

Background: The prevalence of ulcerative colitis (UC) is around 200/100 000 people. Colectomy is required in 7.5%-40% of patients and 58.

View Article and Find Full Text PDF

Inflammatory bowel disease, including Crohn's disease and ulcerative colitis, poses an emerging threat as it can lead to colorectal cancer, thrombosis, and other chronic conditions. The present study demonstrated the protective effects of peanut sprout extracts (PSEs) prepared from day 2 to day 7 of germination against lipopolysaccharide (LPS)-induced epithelial barrier breakdown. Although the peanut sprout length increased in a time-dependent manner from day 1 to day 7, the extraction yields remained relatively consistent from day 2 to day 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!