Identification of abnormal pathology in situ remains one of the challenges of medicine. The interpretation of tissue conditions relies mainly on optical assessment, which can be difficult due to inadequate visual differences or poor color delineation. We propose a methodology to identify regions of abnormal tissue in a targeted area based on red, green, blue (RGB) shift analysis employing a simple CCD color camera and light-emitting diode illumination in a whole-field-imaging scheme. The concept involves analysis of RGB components in an image with respect to a reference set of RGB values under different illumination wavelengths. The magnitude of the gray value shift is estimated by calculating the Euclidean distance between their normalized RGB coordinates. The shift values obtained using these concepts are thereafter used to construct pseudo-colored images with high contrast, enabling easy identification of abnormal areas in the tissue. Images processed from experiments conducted with excised Wistar rat colon sample (lightly doped with Alexafluor 488) and with simulated tumor (cancer cell pellet placed on colon) showed clear localization of tumor region. This proposed approach and methodology is expected to find potential applications for the in vivo diagnosis of disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.17.7.076010 | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
Mn-doped luminescent materials play a significant role in a variety of fields, including modern lighting, displays, and imaging. Mn exhibits a broad and adjustable emission, hinging on the local environment of the crystal field and the interaction of the 3d electrons. However, it is still a challenge to realize the precise control of the emission of Mn ions due to site-prior occupation in a specific lattice.
View Article and Find Full Text PDFJ Econ Entomol
January 2025
Department of Agriculture, Landscape, and Environment, University of Vermont, Burlington, VT, USA.
The swede midge, Contarinia nasturtii Kieffer (Diptera:Cecidomyiidae), is a gall-forming insect pest that targets cruciferous plants. Since its introduction to North America in the early 2000s, the midge has expanded its range to include farming regions in Quebec and the Northeastern USA. In this study, we evaluated the susceptibility of 4 popular kale varieties-Green Curly-(Vates), Red Russian, Red Curly (RedBor), and Lacinato/Tuscan-to swede midge infestation in on-farm trials conducted over consecutive years.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
Although two examples of σ-bonded -bent [RSbSbR] (R = bulky organo- or Ga-groups) that formally contain the Sb radical trianion moiety are known in p-block chemistry, d- or f-element Sb radical trianion complexes, with or without R-substituents, have remained elusive. Here, we report that reduction of a 77:23 mix of [{Th(Tren)}(μ-η:η-Sb)] (, Tren = {N(CHCHNSiPr)}):[{Th(Tren)}(μ-SbH)] () with 1.5 equiv of KC in the presence of 1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.
View Article and Find Full Text PDFVision (Basel)
January 2025
Eye Diseases Clinic, Children's Clinical University Hospital, Vienibas Gatve 45, LV-1004 Riga, Latvia.
This study investigates colour vision deficits in children with amblyopia by employing a computerized colour vision test with varying stimulus sizes (1°, 2°, and 3°). The aim is to delineate the impact of amblyopia on colour discrimination in children and to determine the effectiveness of the computerized colour vision test in detecting these deficits. The study involved 40 participants, divided into 20 children with amblyopia and 20 without amblyopia (control group).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!