The immersion depths (r) of the main functional components of the reaction centres of the Photosystem 2 in the thylakoid membranes were determined by ESR at 77K. It was shown that P680(+), Pheo(-) (pheophytin), and Z(+) (secondary electron donor) the r value was 2-4, 4-7 and 14-20 A, respectively. On the basis of these and reference data a model of location of the Photosystem 2 reaction centre components in the photosynthetic membrane was suggested.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pheophytin secondary
8
secondary electron
8
electron donor
8
[determination depth
4
depth immersion
4
immersion chlorophyll
4
chlorophyll p680
4
p680 pheophytin
4
donor subchloroplast
4
subchloroplast preparations
4

Similar Publications

Pheophytin-a derivatives possessing plastoquinone and phylloquinone analogs in the peripheral 3-substituent were prepared by Friedel-Crafts reactions of a 3-hydroxymethyl-chlorin as one of the chlorophyll-a derivatives with benzo- and naphthohydroquinones, respectively, and successive oxidation of the 1,4-dihydroxy-aryl groups in the resulting dehydration products. The 3-quinonylmethyl-chlorins exhibited ultraviolet-visible absorption and circular dichroism spectra in acetonitrile, which were composed of those of the starting 3-hydroxymethyl-chlorin and the corresponding methylated benzo- and naphthoquinones. No intramolecular interaction between the chlorin and quinone π-systems was observed in the solution owing to the methylene spacer.

View Article and Find Full Text PDF

Chlorophylls (Chls) are ubiquitous photosynthetic pigments with inherent potential to generate cytotoxic reactive oxygen species. Therefore, all phototrophs and any phagotrophs that attempt to digest phototrophic cells have presumably developed mechanisms to mitigate this phototoxicity. In aquatic environments, the Chls produced by the dominant producers, microalgae, are catabolized into nonphototoxic pigments, cyclopheophorbide enols (CPEs), either by microalga-feeding protists or autonomously, particularly by those carrying secondary chloroplasts during the dismantling of their chloroplasts.

View Article and Find Full Text PDF

Femtosecond optical studies of the primary charge separation reactions in far-red photosystem II from Synechococcus sp. PCC 7335.

Biochim Biophys Acta Bioenerg

August 2024

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia. Electronic address:

Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Q band.

View Article and Find Full Text PDF

Reinvestigation on primary processes of PSII-dimer from Thermosynechococcus vulcanus by femtosecond pump-probe spectroscopy.

Photosynth Res

January 2024

The OCU Research Center for Artificial Photosynthesis, Osaka Metropolitan University, 3-3-138Sumiyoshi-Ku, SugimotoOsaka City, Osaka, 558-8585, Japan.

Cyanobacterial photosynthetic apparatus efficiently capture sunlight, and the energy is subsequently transferred to photosystem I (PSI) and II (PSII), to produce electrochemical potentials. PSII is a unique membrane protein complex that photo-catalyzes oxidation of water and majorly contains photosynthetic pigments of chlorophyll a and carotenoids. In the present study, the ultrafast energy transfer and charge separation dynamics of PSII from a thermophilic cyanobacterium Thermosynechococcus vulcanus were reinvestigated by femtosecond pump-probe spectroscopic measurements under low temperature and weak intensity excitation condition.

View Article and Find Full Text PDF

Background: In the last few decades, the use of plant extracts and their phytochemicals as candidates for the management of parasitic diseases has increased tremendously. Irises are aromatic and medicinal plants that have long been employed in the treatment of different infectious diseases by traditional healers in many cultures. This study aims to explore the potential of three common Iris species (I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!