Negative regulation of osteoclastogenesis is important for bone homeostasis and prevention of excessive bone resorption in inflammatory and other diseases. Mechanisms that directly suppress osteoclastogenesis are not well understood. In this study we investigated regulation of osteoclast differentiation by the β2 integrin CD11b/CD18 that is expressed on myeloid lineage osteoclast precursors. CD11b-deficient mice exhibited decreased bone mass that was associated with increased osteoclast numbers and decreased bone formation. Accordingly, CD11b and β2 integrin signaling suppressed osteoclast differentiation by preventing receptor activator of NF-κB ligand (RANKL)-induced induction of the master regulator of osteoclastogenesis nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and of downstream osteoclast-related NFATc1 target genes. CD11b suppressed induction of NFATc1 by the complementary mechanisms of downregulation of RANK expression and induction of recruitment of the transcriptional repressor B-cell lymphoma 6 (BCL6) to the NFATC1 gene. These findings identify CD11b as a negative regulator of the earliest stages of osteoclast differentiation, and provide an inducible mechanism by which environmental cues suppress osteoclastogenesis by activating a transcriptional repressor that makes genes refractory to osteoclastogenic signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522783 | PMC |
http://dx.doi.org/10.1002/jbmr.1739 | DOI Listing |
Clin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China.
Yak milk is a potential nutrient for improving osteoporosis. However, the effect of yak milk on the expression of Caion channel TRPV5 during osteoclast (OC) differentiation is still unclear. This study used ruthenium red as a control to investigate the effect of yak milk on osteoclast differentiation and activity.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China. Electronic address:
We have previously demonstrated that DEC1 promotes osteoblast differentiation. This study aims to evaluate the impact of DEC1 knockout on osteopenic activities, such as osteoclast differentiation and the expression of bone-degrading genes. To gain mechanistic insights, we employed both in vivo and in vitro experiments, utilizing cellular and molecular approaches, including osteoclast differentiation assays and RNA-seq in combination with ChIP-seq.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, China. Electronic address:
Osteoporosis is a common inflammation-related disease in which the release of proinflammatory cytokines promotes bone loss. Oleandrin is a monomer compound extracted from the leaves of the Nerium oleander plant, has been shown to exert an anti-inflammatory effect on a variety of inflammation-related diseases. However, its role in osteoporosis and the underlying mechanisms remain unclear.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
March 2025
Department of Orthopedics, Shenzhen Third People's Hospital, Shenzhen, China.
Osteoporosis is mainly caused by an imbalance in osteoclast and osteoblast regulation, resulting in an imbalance in bone homeostasis. Ginsenoside Rg3 (Rg3) has been reported to have a therapeutic effect on alleviating osteoporosis. Nonetheless, the underlying mechanisms have not been completely elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!