Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material.

Phys Chem Chem Phys

Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore.

Published: October 2012

High capacity Li-rich layered cathode Li(Li(0.2)Mn(0.54)Ni(0.13)Co(0.13))O(2) and doped one are investigated to understand mechanisms of capacity fade as well as voltage decrease upon long-term cycling. Detailed electrochemical analysis reveals a phase-separation-like behavior with increase in the cycle number, which is responsible for gradual reduction in discharge voltage. X-ray photoelectron spectroscopy (XPS), transmission electron microscope coupled with energy dispersive X-ray spectroscopy (TEM-EDS) and inductively coupled plasma emission spectrometry (ICP) analysis results show increase in valence of transition metals on the surface of powder at a fully discharged state in addition to surface dissolution of Ni, leading to rapid capacity loss. High resolution transmission electron microscopy (HR-TEM) shows a phase transformation from original layered structure into spinel-like nano-domains in local structure. Though such an unexpected structural change is unfavorable because of lower output voltage, it is observed to be beneficial for high-rate performance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cp42068fDOI Listing

Publication Analysis

Top Keywords

capacity fade
8
long-term cycling
8
transmission electron
8
structural evolution
4
capacity
4
evolution capacity
4
fade mechanism
4
mechanism long-term
4
cycling li-rich
4
li-rich cathode
4

Similar Publications

Of the few weberite-type Na-ion cathodes explored to date, NaFeF exhibits the best performance, with capacities up to 184 mAh/g and energy densities up to 550 Wh/kg reported for this material. However, the development of robust structure-property relationships for this material is complicated by its tendency to form as a mixture of metastable polymorphs, and transform to a lower-energy Na FeF perovskite compound during electrochemical cycling. Our first-principles-guided exploration of Fe-based weberite solid solutions with redox-inactive Mg and Al predicts an enhanced thermodynamic stability of NaMg Fe F as the Mg content is increased, and the = 0.

View Article and Find Full Text PDF

Failure of the active particles is inherently electrochemo-mechanics dominated. This review comprehensively examines the electrochemo-mechanical degradation and failure mechanisms of active particles in high-energy density lithium-ion batteries. The study delves into the growth of passivating layers, such as the solid electrolyte interphase (SEI), and their impact on battery performance.

View Article and Find Full Text PDF

Parasitic structure defect blights sustainability of cobalt-free single crystalline cathodes.

Nat Commun

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.

Recent efforts to reduce battery costs and enhance sustainability have focused on eliminating Cobalt (Co) from cathode materials. While Co-free designs have shown notable success in polycrystalline cathodes, their impact on single crystalline (SC) cathodes remains less understood due to the significantly extended lithium diffusion pathways and the higher-temperature synthesis involved. Here, we reveal that removing Co from SC cathodes is structurally and electrochemically unfavorable, exhibiting unusual voltage fade behavior.

View Article and Find Full Text PDF

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) derivatives are typical catholytes in aqueous organic redox flow batteries (AORFBs), but reported lifetime of them is limited. We find that the increase of Hirshfeld charge decreases the Gibbs free energy change (ΔG) values of side reactions of TEMPO, a near-linear relationship, and then exacerbates their degradation. Here we predict and synthesize a TEMPO derivative, namely TPP-TEMPO, by analyzing the Hirshfeld charge.

View Article and Find Full Text PDF

Developing multicharge and spin stabilization strategies is fundamental to enhancing the lifetime of functional organic materials, particularly for long-term energy storage in multiredox organic redox flow batteries. Current approaches are limited to the incorporation of electronic substituents to increase or decrease the overall electron density or bulky substituents to sterically shield reactive sites. With the aim to further expand the molecular toolbox for charge and spin stabilization, we introduce regioisomerism as a scaffold-diversifying design element that considers the collective and cumulative electronic and steric contributions from all of the substituents based on their relative regioisomeric arrangements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!