Heme is an essential requirement for cell survival. Heme oxygenase (HO) is the rate-limiting enzyme in heme catabolism and consists of two isozymes, HO-1 and HO-2. To identify the protein that regulates the expression or function of HO-1 or HO-2, we searched for proteins that interact with both isozymes, using protein microarrays. We thus identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) that synthesizes or degrades fructose-2,6-bisphosphate, a key activator of glycolysis, depending on cellular microenvironments. Importantly, HO-2 and PFKFB4 are predominantly expressed in haploid spermatids. Here, we show a drastic reduction in expression levels of PFKFB4 mRNA and protein and HO-2 mRNA in HepG2 human hepatoma cells in responses to glucose deprivation (≤ 2.5 mM), which occurred concurrently with remarkable induction of HO-1 mRNA and protein. Knockdown of HO-2 expression in HepG2 cells, using small interfering RNA, caused PFKFB4 mRNA levels to decrease with a concurrent increase in HO-1 expression. Thus, in HepG2 cells, HO-1 expression was increased, when expression levels of HO-2 and PFKFB4 mRNAs were decreased. Conversely, overexpression of HO-2 in HepG2 cells caused the level of co-expressed PFKFB4 protein to increase. These results suggest a potential regulatory role for HO-2 in ensuring PFKFB4 expression. Moreover, in D407 human retinal pigment epithelial cells, glucose deprivation decreased the expression levels of PFKFB4, HO-1, and HO-2 mRNAs. Thus, glucose deprivation consistently down-regulated the expression of PFKFB4 and HO-2 mRNAs in both HepG2 cells and RPE cells. We therefore postulate that PFKFB4 and HO-2 are expressed in a coordinated manner to maintain glucose homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1620/tjem.228.27 | DOI Listing |
Bioconjug Chem
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
Podophyllotoxin, along with its numerous derivatives and related compounds, is well known for its broad-spectrum pharmacological activity, especially for anticancer potential. In this study, several isatin-podophyllotoxin hybrid compounds were successfully synthesized with good yields through microwave-prompted three-component reactions of 2-amino-1,4-naphthoquinone, various substituted isatins, and tetronic acid. Their cytotoxicity was assessed against four types of human cancer cell lines, HepG2 (hepatoma carcinoma), MCF7 (breast cancer), A549 (non-small lung cancer), and KB (epidermoid carcinoma), alongside nontumorigenic HEK-293 human embryonic kidney cells.
View Article and Find Full Text PDFBackground And Aims: Alcoholic hepatitis (AH) and hepatocellular carcinoma (HCC) are common liver diseases. Chronic inflammation caused by AH can progress to alcoholic cirrhosis (AC) and eventually HCC.
Methods: This study sought to ascertain potential shared genes between AH and HCC through the utilization of multiple transcriptome databases.
Talanta
January 2025
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. Electronic address:
Hepatocellular carcinoma (HCC) stands as a grave illness characterized by elevated death rates. Early identification plays a vital role in improving patient survival. Herein, a novel split-type dual-mode biosensor featuring with near-infrared photoelectronchemical (PEC) and colorimetric sensing characteristics was developed for the high-performance detection of HepG2 cells.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!