Direct electron transfer between enzymes and electrodes is now commonly achieved, but obtaining protein films that are very stable may be challenging. This is particularly crucial in the case of hydrogenases, the enzymes that catalyze the biological conversion between dihydrogen and protons, because the instability of the hydrogenase films may prevent the use of these enzymes as electrocatalysts of H(2) oxidation and production in biofuel cells and photoelectrochemical cells. Here we show that two different FeFe hydrogenases (from Chamydomonas reinhardtii and Clostridium acetobutylicum) can be covalently attached to functionalized pyrolytic graphite electrodes using peptidic coupling. In both cases, a surface patch of lysine residues makes it possible to favor an orientation that is efficient for fast, direct electron transfer. High hydrogen-oxidation current densities are maintained for up to one week, the only limitation being the intrinsic stability of the enzyme. We also show that covalent attachment has no effect on the catalytic properties of the enzyme, which means that this strategy can also used be for electrochemical studies of the catalytic mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac301812sDOI Listing

Publication Analysis

Top Keywords

direct electron
12
electron transfer
12
covalent attachment
8
fefe hydrogenases
8
attachment fefe
4
hydrogenases carbon
4
carbon electrodes
4
electrodes direct
4
transfer direct
4
transfer enzymes
4

Similar Publications

Cyanobacteria and Chloroflexota cooperate to structure light-responsive biofilms.

Proc Natl Acad Sci U S A

February 2025

Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA 94305.

Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).

View Article and Find Full Text PDF

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

Vortex states of photons, electrons, and other particles are freely propagating wave packets with helicoidal wave fronts winding around the axis of a phase vortex. A particle prepared in a vortex state carries a nonzero orbital angular momentum projection on the propagation direction, a quantum number that has never been exploited in experimental particle and nuclear physics. Low-energy vortex photons, electrons, neutrons, and helium atoms have been demonstrated in experiment and found numerous applications, and there exist proposals of boosting them to higher energies.

View Article and Find Full Text PDF

The Linac Coherent Light Source (LCLS) is the world's first x-ray free electron laser. It is a scientific user facility operated by the SLAC National Accelerator Laboratory, at Stanford, for the U.S.

View Article and Find Full Text PDF

We investigate the ultrafast electron correlation effects during non-sequential double ionization (NSDI) of argon subjected to a combined femtosecond field composed of counter-rotating two-color circularly polarized (TCCP) pulse laser using a 3D classical ensemble model (CEM). Our simulation results reveal that manipulation of the carrier-envelope phase (CEP) of the external driving field modulates the dynamical behavior of the two electrons, resulting in a notable sensitivity of their momentum distribution to the relative phase of two components of the counter-rotating TCCP field. Through inversion analysis, we uncover the capability to direct electrons toward a single direction, thereby facilitating focused ion-electron collisions on the attosecond timescale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!