There are formidable challenges in developing HIV vaccines that elicit potent neutralizing antibodies against a broad array of HIV-1 isolates. The key targets for these neutralizing antibodies are the viral envelope antigens gp120 and gp41. Although broadly reactive neutralizing epitopes on gp120 and gp41 have been mapped and studied extensively, these epitopes are poorly immunogenic. Indeed, various vaccine candidates tested in preclinical and clinical trials do not generate antibodies against these epitopes. Hence, novel immunogen designs to augment the immunogenicity of these neutralizing epitopes are wanted. In this review, a unique immunogen design strategy that exploits immune complexes of gp120 and selected anti-gp120 monoclonal antibodies (mAb) to elicit neutralizing antibodies against cross-reactive V3 epitopes is discussed. The ability of these complexes to stimulate neutralizing antibodies is dictated by fine specificity and affinity of mAbs used to form the complexes, indicating the contribution of Fab-mediated activity, rather than conventional Fc-mediated enhancement. Further improvement of V3 immunogenicity is attainable by forming immune complexes with gp120 mutants lacking site-specific N-linked glycans. The increased V3 immunogenicity on the mutated gp120/mAb complexes correlates with enhancement of in vitro antibody recognition (antigenicity) and proteolytic resistance of V3 epitopes when presented on the complexes. These insights should provide guidelines for the development of more potent immunogens that target not only the prototypic V3 epitopes but also other broadly reactive epitopes on the HIV envelope.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417061 | PMC |
http://dx.doi.org/10.4172/2155-6113.S8-002 | DOI Listing |
Theranostics
January 2025
Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.
View Article and Find Full Text PDFVet Res Forum
December 2024
MD Student, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the emerging zoonotic respiratory disease. One of the most important prerequisites for combating emerging diseases is the development of vaccines within a short period of time. In this study, antigen-irradiated, inactivated SARS-CoV-2 viruses and the disaccharide trehalose were used to enhance immune responses in the Syrian hamster.
View Article and Find Full Text PDFVet Res Forum
December 2024
Institute of Pathogenic Microbiology, College of Biological Science and Engineering, and Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, China.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. The receptor binding domain (RBD), located at the spike protein of SARS-CoV-2, contains most of the neutralizing epitopes during viral infection and is an ideal antigen for vaccine development. In this study, bioinformatic analysis of the amino acid sequence data of SARS-CoV-2 RBD protein for the better understanding of molecular characteristics was performed.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Izmir Biomedicine and Genome Center, Izmir, Turkey.
Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan.
Rapid and sensitive detection of virus-related antigens and antibodies is crucial for controlling sudden seasonal epidemics and monitoring neutralizing antibody levels after vaccination. However, conventional detection methods still face challenges related to compatibility with rapid, highly sensitive, and compact detection apparatus. In this work, we developed a Si nanowire (SiNW)-based field-effect biosensor by precisely controlling the process conditions to achieve the required electrical properties via complementary metal-oxide-semiconductor (CMOS)-compatible nanofabrication processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!