Background: The aim of this study was to present cortical potentials after electrical intraneural stimulation of the optic nerve during orbital enucleation due to malignant melanoma of the choroid or the ciliary body. These cortical potentials were related to cortical potentials after electrical epidural stimulation of the optic nerve, recorded during non-manipulative phases of neurosurgery for central skull base tumors.

Methods: Cortical potentials were recorded with surface occipital electrode (Oz) in six patients undergoing orbital enucleation under total intravenous anesthesia. Two thin needle stimulating electrodes were inserted inside the intraorbital part of the optic nerve. The electrical stimulus consisted of a rectangular current pulse of varying intensity (0.2-10.0 mA) and duration (0.1-0.3 ms); the stimulation rate was 2 Hz; the bandpass filter was 1-1,000 Hz; the analysis time was 50-300 ms.

Results: Cortical potentials could not be obtained or were inconsistently elicitable in three patients with longstanding history (>3 months) of severe visual deterioration, while they consisted of several positive and negative deflections in a patient with a short history of mild visual impairment. In two other patients, cortical potentials consisted of N20, P30 and N40 waves.

Discussion: Cortical potentials after electrical intraneural stimulation of the optic nerve could be recorded in patients with a short history of visual deterioration and without optic nerve atrophy and appear more heterogeneous than cortical potentials after electrical epidural stimulation of the optic nerve, recorded during non-manipulative phases of neurosurgery for central skull base tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10633-012-9346-xDOI Listing

Publication Analysis

Top Keywords

cortical potentials
36
optic nerve
28
potentials electrical
20
stimulation optic
20
electrical intraneural
12
intraneural stimulation
12
orbital enucleation
12
nerve recorded
12
cortical
9
nerve orbital
8

Similar Publications

Electrical excitability of neuronal networks based on the voltage threshold of electrical stimulation.

Sci Rep

December 2024

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.

Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.

View Article and Find Full Text PDF

Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.

View Article and Find Full Text PDF

Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy.

Nat Commun

December 2024

Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

Peripheral neuropathy (PN), the most common complication of diabetes, leads to sensory loss and associated health issues as pain and increased fall risk. However, present treatments do not counteract sensory loss, but only partially manage its consequences. Electrical neural stimulation holds promise to restore sensations, but its efficacy and benefits in PN damaged nerves are yet unknown.

View Article and Find Full Text PDF

Background: Cochlear implants (CIs) have the potential to facilitate auditory restoration in deaf children and contribute to the maturation of the auditory cortex. The type of CI may impact hearing rehabilitation in children with CI. We aimed to study central auditory processing activation patterns during speech perception in Mandarin-speaking pediatric CI recipients with different device characteristics.

View Article and Find Full Text PDF

Olfactory deficits in aging and Alzheimer's-spotlight on inhibitory interneurons.

Front Neurosci

December 2024

Institute of Physiology, RG Neurophysiology and Optogenetics, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany.

Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer's disease (AD) correlates to olfactory performance. Aging and disease progression both show marked olfactory deficits in humans and rodents. As a clear understanding of what causes olfactory deficits is still missing, research on this topic is paramount to diagnostics and early intervention therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!