Cancer-related fatigue is a pervasive syndrome experienced by a majority of cancer patients undergoing treatment, and muscular dysfunction may be a key component in the development and progression of this syndrome. Doxorubicin (DOX) is a commonly used antineoplastic agent used in the treatment of many cancers. The purpose of this study was to determine the effect of DOX exposure on the function of cardiac, skeletal, and smooth muscle tissues and examine the role accumulation of DOX may play in this process. In these studies, rats were treated with DOX and measurements of cardiac, skeletal, and smooth muscle function were assessed 1, 3, and 5 days after exposure. All muscular tissues showed significant and severe dysfunction, yet there was heterogeneity both in the time course of dysfunction and in the accumulation of DOX. Cardiac and skeletal muscle exhibited a time-dependent progressive decline in function during the 5 days following DOX treatment. In contrast, vascular function showed a decline in function that could be characterized as rapid onset and was sustained for the duration of the 5-day observation period. DOX accumulation was greatest in cardiac tissue, yet all muscular tissues showed a similar degree of dysfunction. Our data suggest that in muscular tissues both DOX-dependent and DOX-independent mechanisms may be involved with the muscular dysfunction observed following DOX treatment. Furthermore, this study highlights the fact that dysfunction of skeletal and smooth muscle may be an underappreciated aspect of DOX toxicity and may be a key component of cancer-related fatigue in these patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13105-012-0200-0DOI Listing

Publication Analysis

Top Keywords

cardiac skeletal
12
skeletal smooth
12
smooth muscle
12
muscular tissues
12
dox
9
skeletal muscle
8
muscle function
8
cancer-related fatigue
8
muscular dysfunction
8
key component
8

Similar Publications

Sarcoglycans are enriched at the neuromuscular junction in a nerve-dependent manner.

Cell Death Dis

January 2025

Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy.

Sarcoglycanopathies are heterogeneous proximo-distal diseases presenting severe muscle alterations. Although there are 6 different sarcoglycan isoforms, sarcoglycanopathies are caused exclusively by mutations in genes coding for one of the four sarcoglycan transmembrane proteins (alpha, beta, gamma and delta) forming the sarcoglycan complex (SGC) in skeletal and cardiac muscle. Little is known about the different roles of the SGC beyond the dystrophin glycoprotein complex (DGC) structural role.

View Article and Find Full Text PDF

The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º.

View Article and Find Full Text PDF

BCL6 coordinates muscle mass homeostasis with nutritional states.

Proc Natl Acad Sci U S A

January 2025

Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037-1002.

Nutritional status is a determining factor for growth during development and homeostatic maintenance in adulthood. In the context of muscle, growth hormone (GH) coordinates growth with nutritional status; however, the detailed mechanisms remain to be fully elucidated. Here, we show that the transcriptional repressor B cell lymphoma 6 (BCL6) maintains muscle mass by sustaining GH action.

View Article and Find Full Text PDF

Opioids have been the primary method used to manage pain for hundreds of years, however the increasing prescription rate of these drugs in the modern world has led to a public health crisis of overdose related deaths. Naloxone is the current standard treatment for opioid overdose rescue, but it has not been fully investigated for potential off-target toxicity effects. The current methods for pharmaceutical development do not correlate well with pre-clinical animal studies compared to clinical results, creating a need for improved methods for therapeutic evaluation.

View Article and Find Full Text PDF

Diabetes mellitus (DM) leads to a more rapid development of DM cardiomyopathy (dbCM) and progression to heart failure in women than men. Combination of high-fat diet (HFD) and freshly-injected streptozotocin (STZ) has been widely used for DM induction, however emerging data shows that anomer-equilibrated STZ produces an early onset and robust DM model. We designed a novel protocol utilising a combination of multiple doses of anomer-equilibrated STZ injections and HFD to develop a stable murine DM model featuring dbCM analogous to humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!