The lateral membrane of mammalian cochlear outer hair cells contains prestin, a protein which can act as a fast voltage-driven actuator responsible for electromotility and enhanced sensitivity to sound. The protein belongs to the SLC26 family of transporters whose members are characterised as able to exchange halides for SO(4)(2-) or HCO(3)(-) yet previous analyses of mammalian prestin have suggested that such exchange functions were minimal. Here anion transport is investigated both in guinea-pig outer hair cells (OHCs) and in an expression system where we employ a sensitive intracellular pH (pH(i)) probe, pHluorin, to report HCO(3)(-) transport and to monitor the small pH(i) changes observable in the cells. In the presence of extracellular HCO(3)(-), pH(i) recovered from an acid load 4 times faster in prestin-transfected cells. The acceleration required a chloride gradient established by reducing extracellular chloride to 2 mm. Similar results were also shown using BCECF as an alternative pH(i) sensor, but with recovery only found in those cells expressing prestin. Simultaneous electrophysiological recording of the transfected cells during bicarbonate exposure produced a shift in the reversal potential to more negative potentials, consistent with electrogenic transport. These data therefore suggest that prestin can act as a weak Cl(-)/HCO(3)(-) antiporter and it is proposed that, in addition to participating in wide band cochlear sound amplification, prestin may also be involved in the slow time scale (>10 s) phenomena where changes in cell stiffness and internal pressure have been implicated. The results show the importance of considering the effects of the endogenous bicarbonate buffering system in evaluating the function of prestin in cochlear outer hair cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528980 | PMC |
http://dx.doi.org/10.1113/jphysiol.2012.241448 | DOI Listing |
Elife
January 2025
Department of Mechanical Engineering, University of Rochester, Rochester, United States.
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.
View Article and Find Full Text PDFGenome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
Cell Biochem Biophys
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
Sensorineural hearing loss (SNHL) is an increasingly prevalent sensory disorder, but the underlying mechanisms remain poorly understood. Adaptor related protein complex 2 subunit beta 1 (AP2B1) has been indicated to be detectable in mature cochleae. Nonetheless, it is unclear whether AP2B1 is implicated in the progression of SNHL.
View Article and Find Full Text PDFCureus
December 2024
School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, USA.
Introduction: Dentists and dental professionals report a high prevalence of noise-induced hearing loss (NIHL) and related symptoms. Chronic exposure to high-frequency dental instrument sounds, which can damage the outer hair cells (OHCs) of the cochlea, is strongly linked to their NIHL. Similarly, dental students in teaching clinics often report symptoms associated with NIHL.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!