This communication demonstrates a novel strategy for the selective growth of Au nanograins (AuNGs) on specific positions (tips, edges and facets) of Cu(2)O octahedrons to form Cu(2)O-Au hierarchical heterostructures. The surface energy distribution of the octahedrons generally follows the order of γ((facets)) < γ((edges)) < γ((tips)) and leads to the preferential growth and evolution of the heterostructures. These novel Cu(2)O-Au hierarchical heterostructures show fascinating degradations of methylene blue (MB), due to the suppressed electron/hole recombination phenomena and the highly efficient light harvesting.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2dt31487hDOI Listing

Publication Analysis

Top Keywords

cu2o-au hierarchical
12
hierarchical heterostructures
12
selective growth
8
growth nanograins
8
specific positions
8
positions tips
8
tips edges
8
edges facets
8
facets cu2o
8
cu2o octahedrons
8

Similar Publications

This communication demonstrates a novel strategy for the selective growth of Au nanograins (AuNGs) on specific positions (tips, edges and facets) of Cu(2)O octahedrons to form Cu(2)O-Au hierarchical heterostructures. The surface energy distribution of the octahedrons generally follows the order of γ((facets)) < γ((edges)) < γ((tips)) and leads to the preferential growth and evolution of the heterostructures. These novel Cu(2)O-Au hierarchical heterostructures show fascinating degradations of methylene blue (MB), due to the suppressed electron/hole recombination phenomena and the highly efficient light harvesting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!