This communication demonstrates a novel strategy for the selective growth of Au nanograins (AuNGs) on specific positions (tips, edges and facets) of Cu(2)O octahedrons to form Cu(2)O-Au hierarchical heterostructures. The surface energy distribution of the octahedrons generally follows the order of γ((facets)) < γ((edges)) < γ((tips)) and leads to the preferential growth and evolution of the heterostructures. These novel Cu(2)O-Au hierarchical heterostructures show fascinating degradations of methylene blue (MB), due to the suppressed electron/hole recombination phenomena and the highly efficient light harvesting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt31487h | DOI Listing |
Dalton Trans
December 2012
Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, PR China.
This communication demonstrates a novel strategy for the selective growth of Au nanograins (AuNGs) on specific positions (tips, edges and facets) of Cu(2)O octahedrons to form Cu(2)O-Au hierarchical heterostructures. The surface energy distribution of the octahedrons generally follows the order of γ((facets)) < γ((edges)) < γ((tips)) and leads to the preferential growth and evolution of the heterostructures. These novel Cu(2)O-Au hierarchical heterostructures show fascinating degradations of methylene blue (MB), due to the suppressed electron/hole recombination phenomena and the highly efficient light harvesting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!