We present the bottom-up fabrication of dispersive silica core, gold cladding ground plane optical nanoantennas. The structures are made by a combination of electron-beam induced deposition of silica and sputtering of gold. The antenna lengths range from 300 to 2100 nm with size aspect ratios as large as 20. The angular emission patterns of the nanoantennas are measured with angle-resolved cathodoluminescence spectroscopy and compared with finite-element methods. Good overall correspondence between the the measured and calculated trends is observed. The dispersive nature of these plasmonic monopole antennas makes their radiation profile highly tunable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn302907j | DOI Listing |
Sensors (Basel)
January 2025
Engineering Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Topography estimation is essential for autonomous off-road navigation. Common methods rely on point cloud data from, e.g.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Environmental Remote Sensing and Geoinformatics, Trier University, Universitätsring 15, 54296 Trier, Germany.
Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453600, China.
A novel common-aperture miniaturized antenna with wideband and dual-polarized characteristics is proposed, which consists of a circularly polarized (CP) and a linearly polarized (LP) antenna. The circularly polarized antenna stacked on the upper layer adopts asymmetrical ground and introduces the patch and T-type feed network. On this basis, the meshed reflector structure, which also works as a ground plane for the LP antenna, is added to reduce the influence on circular polarization and achieve directional radiation.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing 100081, China.
Objective: To develop an original-mirror alignment associated deep learning algorithm for intelligent registration of three-dimensional maxillofacial point cloud data, by utilizing a dynamic graph-based registration network model (maxillofacial dynamic graph registration network, MDGR-Net), and to provide a valuable reference for digital design and analysis in clinical dental applications.
Methods: Four hundred clinical patients without significant deformities were recruited from Peking University School of Stomatology from October 2018 to October 2022. Through data augmentation, a total of 2 000 three-dimensional maxillofacial datasets were generated for training and testing the MDGR-Net algorithm.
Sci Rep
January 2025
Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, UK.
This study investigates the aerodynamic and aeroacoustic behavior of propellers operating in ground-effect conditions, with an emphasis on the impact of porous ground surface treatments. The investigation explores the potential of porous materials to reduce propeller noise near the ground, a major barrier to the acceptance and integration of Urban Air Mobility (UAM) systems. Experiments were conducted in an anechoic chamber using an APC [Formula: see text] inch propeller in a pusher configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!