Effect of surface modification on magnetization of iron oxide nanoparticle colloids.

Langmuir

Mechanical, Aerospace and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.

Published: September 2012

Magnetic iron oxide nanoparticles have numerous applications in the biomedical field, some more mature, such as contrast agents in magnetic resonance imaging (MRI), and some emerging, such as heating agents in hyperthermia for cancer therapy. In all of these applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration, and add functionality. However, the coatings may interact with the surface atoms of the magnetic core and form a magnetically disordered layer, reducing the total amount of the magnetic phase, which is the key parameter in many applications. In the current study, amine and carboxyl functionalized and bare iron oxide nanoparticles, all suspended in water, were purchased and characterized. The presence of the coatings in commercial samples was verified with X-ray photoelectron spectroscopy (XPS). The class of iron oxide (magnetite) was verified via Raman spectroscopy and X-ray diffraction. In addition to these, in-house prepared iron oxide nanoparticles coated with oleic acid and suspended in heptane and hexane were also investigated. The saturation magnetization obtained from vibrating sample magnetometry (VSM) measurements was used to determine the effective concentration of magnetic phase in all samples. The Tiron chelation test was then utilized to check the real concentration of the iron oxide in the suspension. The difference between the concentration results from VSM and the Tiron test confirmed the reduction of magnetic phase of magnetic core in the presence of coatings and different suspension media. For the biocompatible coatings, the largest reduction was experienced by amine particles, where the ratio of the effective weight of magnetic phase reported to the real weight was 0.5. Carboxyl-coated samples experienced smaller reduction with a ratio of 0.64. Uncoated sample also exhibits a reduction with a ratio of 0.6. Oleic acid covered samples show a solvent-depended reduction with a ratio of 0.5 in heptane and 0.4 in hexane. The corresponding effective thickness of the nonmagnetic layer between magnetic core and surface coating was calculated by fitting experimentally measured magnetization to the modified Langevin equation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la3022479DOI Listing

Publication Analysis

Top Keywords

iron oxide
24
magnetic phase
16
oxide nanoparticles
12
magnetic core
12
reduction ratio
12
magnetic
10
presence coatings
8
oleic acid
8
heptane hexane
8
iron
6

Similar Publications

Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment.

View Article and Find Full Text PDF

Enhanced Transepithelial Riboflavin Delivery Across the Cornea Using Magnetic Nanocarriers.

J Ocul Pharmacol Ther

January 2025

Department of Analytical Chemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey.

Keratoconus is a progressive corneal ectasia characterized by irregular astigmatism, leading to corneal scarring and decreased vision. Corneal cross-linking (CXL) is the standard treatment to halt disease progression, but its effectiveness in transepithelial (epithelium-on, epi-on) approaches is limited by the low permeability of the corneal epithelium to riboflavin (Rb). This study aimed to enhance transepithelial Rb penetration in bovine corneas using Rb-modified tannic acid-coated superparamagnetic iron oxide nanoparticles (Rb-TA-SPIONs) under an external magnetic field.

View Article and Find Full Text PDF

Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) are known to be good MRI contrasts, but they have a high tendency to aggregate and their biocompatibility is limited. Hyaluronic acid is highly biocompatible, can provide SPION with colloidal stability, and interacts specifically with tumor cells through the CD44 receptor; therefore, it was used as a stabilizing layer. We successfully obtained SPION coated with hyaluronic acid and further functionalized it with folic acid to construct a dual-targeted system.

View Article and Find Full Text PDF

Nitrite reverses nitroglycerin tolerance via repletion of a nitrodilator-activated nitric oxide store in vascular smooth muscle cells.

Redox Biol

January 2025

Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA. Electronic address:

Repeated use of nitroglycerin results in a loss of its vasodilatory efficacy which limits its clinical use for the treatment of angina pectoris. This tolerance phenomenon is a defining characteristic of all compounds classified as nitrodilators, which includes NTG as well as S-nitrosothiols and dinitrosyl iron complexes. These compounds vasodilate via activation of soluble guanylate cyclase, although they do not release requisite amounts of free nitric oxide (NO) and some do not even cross the plasma membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!