The synchronous amoebae-to-flagellates differentiation of Naegleria pringsheimi has been used as a model system to study the formation of eukaryotic flagella. We cloned two novel genes, Clp, Class I on plasma membrane and Clb, Class I at basal bodies, which are transiently expressed during differentiation and characterized their respective protein products. CLP (2,087 amino acids) and CLB (1,952 amino acids) have 82.9% identity in their amino acid sequences and are heavily N-glycosylated, leading to an ~ 100 × 10(3) increase in the relative molecular mass of the native proteins. In spite of these similarities, CLP and CLB were localized to distinct regions: CLP was present on the outer surface of the plasma membrane, whereas CLB was concentrated at a site where the basal bodies are assembled and remained associated with the basal bodies. Oryzalin, a microtubule toxin, inhibited the appearance of CLP on the plasma membrane, but had no effect on the concentration of CLB at its target site. These data suggest that N. pringsheimi uses separate mechanisms to transport CLP and CLB to the plasma membrane and to the site of basal body assembly, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1550-7408.2012.00642.xDOI Listing

Publication Analysis

Top Keywords

plasma membrane
16
clp clb
12
basal bodies
12
naegleria pringsheimi
8
membrane clb
8
amino acids
8
site basal
8
clp
7
clb
7
coordinate synthesis
4

Similar Publications

The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.

View Article and Find Full Text PDF

Small and Versatile Cyclotides as Anti-infective Agents.

ACS Infect Dis

January 2025

Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil.

Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.

View Article and Find Full Text PDF

The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.

Chem Biol Drug Des

January 2025

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.

Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!