RPGR gene encodes retinitis pigmentosa guanosine triphosphatase regulator protein, mutations of which cause 70% of the X-linked retinitis pigmentosa (XLRP) cases. Rarely, RPGR mutations can also cause primary ciliary dyskinesia (PCD), a multisystem disorder characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis, and male subfertility. Two patients with PCD_RP and their relatives were analyzed using DNA sequencing, transmission electron microscopy (TEM), immunofluorescence (IF), photometry, and high-speed videomicroscopy. The Polish patient carried a previously known c.154G>A substitution (p.Gly52Arg) in exon 2 (known to affect splicing); the mutation was co-segregating with the XLRP symptoms in his family. The c.824 G>T mutation (p. Gly275Val) in the Australian patient was a de novo mutation. In both patients, TEM and IF did not reveal any changes in the respiratory cilia structure. However, following ciliogenesis in vitro, in contrast to the ciliary beat frequency, the ciliary beat coordination in the spheroids from the Polish proband and his relatives carrying the c.154G>A mutation was reduced. Analysis of the ciliary alignment indicated severely disturbed orientation of cilia. Therefore, we confirm that defects in the RPGR protein may contribute to syndromic PCD. Lack of ultrastructural defects in respiratory cilia of the probands, the reduced ciliary orientation and the decreased coordination of the ciliary bundles observed in the Polish patient suggested that the RPGR protein may play a role in the establishment of the proper respiratory cilia orientation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ppul.22632DOI Listing

Publication Analysis

Top Keywords

respiratory cilia
16
rpgr mutations
8
retinitis pigmentosa
8
polish patient
8
ciliary beat
8
rpgr protein
8
ciliary
6
rpgr
5
respiratory
5
cilia
5

Similar Publications

CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility.

Cell Mol Life Sci

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.

Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.

View Article and Find Full Text PDF

The objective of this study was to investigate the prognostic significance of the frequency of primary cilia (PC) and β-catenin expression in 218 patients (pts) with non-small cell lung cancer (NSCLC), including 125 pts with adenocarcinoma and 93 pts with squamous cell carcinoma. In the whole group of 218 pts with NSCLC, overall survival (OS) was significantly inferior among pts with present PC than without PC (p=0.024) and with higher cytoplasmic β-catenin expression (25-75%) than with lower cytoplasmic β-catenin expression (<25%) (p=0.

View Article and Find Full Text PDF

Primary ciliary dyskinesia (PCD, OMIM 244400) is a rare genetic disorder that affects motile cilia and is characterised by impaired mucociliary clearance of the airway epithelium, which results in chronic upper and lower airway infections. While short-read next-generation sequencing technology has been used for the genetic testing of PCD, its effectiveness is limited in identifying variants in the gene because of the nearly identical pseudogene As we confirmed that the gene was not expressed in airway cells, we obtained nasal mucosa biopsy specimens for total RNA sequencing (RNA-seq) with library enrichment using exome oligos. Among the 34 nasal samples from patients suspected of having PCD, three aberrant splicing patterns in were identified in two samples.

View Article and Find Full Text PDF

Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits.

Medicina (Kaunas)

December 2024

Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!