Direct imaging of hyperpolarized 129Xe alveolar gas uptake in a mouse model of emphysema.

Magn Reson Med

Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.

Published: July 2013

MRI of hyperpolarized (129)Xe dissolved in pulmonary tissues, and blood has the potential to offer a new tool for regional evaluation of pulmonary gas exchange and perfusion; however, the extremely short T2* and low magnetization density make it difficult to acquire the image. In this study, an ultrashort echo-time sequence was introduced, and its feasibility to quantitatively assess emphysema-like pulmonary tissue destruction by a combination of dissolved- and gas-phase (129)Xe lung MRI was investigated. The ultrashort echo-time has made it possible to acquire dissolved (129)Xe images with reasonably high spatial resolution of 0.625 × 0.625 mm(2) and to obtain T2* of 0.67 ± 0.30 ms in a spontaneously breathing mouse at 9.4 T. The regional dynamic alveolar gas uptake as well as subsequent transport by pulmonary blood flow was also visualized. The ratio of (129)Xe magnetization that diffused into the septa relative to the gas-phase magnetization F was regionally evaluated. The mean F value of elastase-treated mice was 2.28 ± 0.46%, which was significantly reduced from that of control mice 3.41 ± 0.48% (P = 0.0052). This reflects the reduced uptake efficiency due to alveolar tissue destruction and is correlated with the histologically derived alveolar surface-to-volume ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.24452DOI Listing

Publication Analysis

Top Keywords

hyperpolarized 129xe
8
alveolar gas
8
gas uptake
8
ultrashort echo-time
8
tissue destruction
8
129xe
5
direct imaging
4
imaging hyperpolarized
4
alveolar
4
129xe alveolar
4

Similar Publications

Magnetic resonance image denoising for Rician noise using a novel hybrid transformer-CNN network (HTC-net) and self-supervised pretraining.

Med Phys

December 2024

Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.

Background: Magnetic resonance imaging (MRI) is a crucial technique for both scientific research and clinical diagnosis. However, noise generated during MR data acquisition degrades image quality, particularly in hyperpolarized (HP) gas MRI. While deep learning (DL) methods have shown promise for MR image denoising, most of them fail to adequately utilize the long-range information which is important to improve denoising performance.

View Article and Find Full Text PDF

Measurement of pulmonary hematocrit using oscillation of hyperpolarized Xe MR signals in blood.

Magn Reson Med

December 2024

Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.

Purpose: To demonstrate the feasibility of measuring pulmonary hematocrit (Hct) in blood in vivo using oscillation of hyperpolarized Xe MR signals and its potential for disease assessment in animal models.

Methods: Hyperpolarized Xe dynamic MR spectroscopy was performed on 10 anemia model rats and 10 control rats. A concise model based on hyperpolarized Xe MR signal oscillations was built for calculating pulmonary Hct.

View Article and Find Full Text PDF

Pulmonary MRI in Newborns and Children.

J Magn Reson Imaging

December 2024

POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, The University of Sheffield, Sheffield, UK.

Lung MRI is an important tool in the assessment and monitoring of pediatric and neonatal lung disorders. MRI can provide both similar and complementary image contrast to computed tomography for imaging the lung macrostructure, and beyond this, a number of techniques have been developed for imaging the key functions of the lungs, namely ventilation, perfusion, and gas exchange, through the use of free-breathing proton and hyperpolarized gas MRI. Here, we review the state-of-the-art in MRI methods that have found utility in pediatric and neonatal lung imaging, the structural and physiological information that can be gleaned from such images, and strategies that have been developed to deal with respiratory (and cardiac) motion, and other technological challenges.

View Article and Find Full Text PDF

Pulmonary Xe MRI: CNN Registration and Segmentation to Generate Ventilation Defect Percent with Multi-center Validation.

Acad Radiol

November 2024

Robarts Research Institute, Western University, London, Canada; School of Biomedical Engineering, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Division of Respirology, Department of Medicine, Western University, London, Canada. Electronic address:

Rationale And Objectives: Hyperpolarized Xe MRI quantifies ventilation-defect-percent (VDP), the ratio of Xe signal-void to the anatomic H MRI thoracic-cavity-volume. VDP is associated with airway inflammation and disease control and serves as a treatable trait in therapy studies. Semi-automated VDP pipelines require time-intensive observer interactions.

View Article and Find Full Text PDF

Purpose: The purpose of this work is to validate a simple and versatile integrated variable flip angle (VFA) method for mapping B in hyperpolarized MRI, which can be used to correct signal variations due to coil inhomogeneity.

Theory And Methods: Simulations were run to assess performance of the VFA B mapping method compared to the currently used constant flip angle (CFA) approach. Simulation results were used to inform the design of VFA sequences, validated in four volunteers for hyperpolarized xenon-129 imaging of the lungs and another four volunteers for hyperpolarized carbon-13 imaging of the human brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!