Oxidative stress and apoptosis in homocystinuria patients with genetic remethylation defects.

J Cell Biochem

Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa CSIC-UAM, Departamento de Biología Molecular. Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain.

Published: January 2013

Oxidative stress has been described as a putative disease mechanism in pathologies associated with an elevation of homocysteine. An increased reactive oxygen species (ROS) production and apoptosis rate have been associated with several disorders of cobalamin metabolism, particularly with methylmalonic aciduria (MMA) combined with homocystinuria cblC type. In this work, we have evaluated several parameters related to oxidative stress and apoptosis in fibroblasts from patients with homocystinuria due to defects in the MTR, MTRR, and MTHFR genes involved in the remethylation pathway of homocysteine. We have also evaluated these processes by knocking down the MTRR gene in cellular models, and complementation by transducing the wild-type gene in cblE mutant fibroblasts. All cell lines showed a significant increase in ROS content and in MnSOD expression level, and also a higher rate of apoptosis with similar levels to the ones in cblC fibroblasts. The amount of the active phosphorylated forms of p38 and JNK stress-kinases was also increased. ROS content and apoptosis rate increased in control fibroblasts and in a glioblastoma cell line by shRNA-mediated silencing of MTRR gene expression. In contrast, wild-type MTRR gene corrected mutant cell lines showed a decrease in ROS and apoptosis levels. To the best of our knowledge, this study provides the first evidence that an impaired remethylation capacity due to low MTRR and MTR activity might be partially responsible for stress response.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24316DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
mtrr gene
12
stress apoptosis
8
apoptosis rate
8
cell lines
8
ros content
8
apoptosis levels
8
apoptosis
6
mtrr
5
apoptosis homocystinuria
4

Similar Publications

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

ALDH2 Plays a Role in Spermatogenesis and Male Fertility by Regulating Oxidative Stress in Mice.

Exp Cell Res

December 2024

School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China. Electronic address:

Spermatogenesis and sperm maturation are complex biological processes that involve intricate cellular and molecular interactions. The Aldh2 gene is involved in the metabolism of specific aldehydes generated by oxidative stress. Aldh2 is abundantly expressed in the testis and epididymis; however, the specific role of Aldh2 in regulating spermatogenesis and sperm maturation remains unclear.

View Article and Find Full Text PDF

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!