Newly developed mouse newborn behavioral testing method for evaluating the risk of neurotoxicity of environmental toxicants.

J Appl Toxicol

Laboratory of Developmental Biology, Department of Life Science, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.

Published: December 2013

Although there have been a vast number of behavioral toxicology studies carried out on adult mice and rats, there have been few neurobehavioral studies utilizing their newborn animals. Thus, we developed a mouse newborn behavioral testing method for evaluating the risk of neurotoxicity of chemicals, by means of determining the newborn's activity using the tare function of an analytical balance. The unstable weighing values resulting from movement of the newborn on the balance recorded by a personal computer every 0.1 s, and the total activities of a newborn from the start time of weighing to individual times of evaluation were calculated. In addition, we confirmed the usefulness of our method by determining the activity of mouse newborns with microcephaly induced by prenatal exposure to a neurotoxicant, methylnitrosourea.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.2802DOI Listing

Publication Analysis

Top Keywords

developed mouse
8
mouse newborn
8
newborn behavioral
8
behavioral testing
8
testing method
8
method evaluating
8
evaluating risk
8
risk neurotoxicity
8
newborn
5
newly developed
4

Similar Publications

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Cerebral ischemic stroke, neuronal death, and inflammation bring difficulties in neuroprotection and rehabilitation. In this study, we developed and designed the ability of natural lactoferrin-polyethylene glycol-polyphenylalanine-baicalein nanomicelles (LF-PEG-PPhe-Bai) to target and reduce these pathological processes, such as neurological damage and cognitive impairment in the stages of poststroke. Nanomicelles made from biocompatible materials have improved bioavailability and targeted distribution to afflicted brain areas.

View Article and Find Full Text PDF

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

Lineage tracing studies suggest that the placenta is not a de novo source of hematopoietic stem cells.

PLoS Biol

January 2025

Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Definitive hematopoietic stem and progenitor cells (HSPCs) arise from a small number of hemogenic endothelial cells (HECs) within the developing embryo. Understanding the origin and ontogeny of HSPCs is of considerable interest and potential therapeutic value. It has been proposed that the murine placenta contains HECs that differentiate into HSPCs.

View Article and Find Full Text PDF

Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!