The dual-effects of LaCl₃ on the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells.

Biol Trace Elem Res

College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China.

Published: December 2012

A series of experimental methods including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, alkaline phosphatase (ALP) activity measurement, alizarin red S stain and measurement, quantitative real-time reverse transcriptase polymerase chain reaction, and Western blot analysis were employed to assess the effects of LaCl₃ on the proliferation, osteogenic differentiation, and mineralization of a murine preosteoblast cell line MC3T3-E1 at cell and molecular levels. The results indicated that LaCl₃ had dual effects on the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. First, LaCl₃ promoted the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells at lower concentrations, then had no effects and further turned to inhibit the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells with increasing concentrations. The expression of runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (BMP2), ALP, bone sialoprotein (BSP), collagen I (Col I), and osteocalcin (OCN) genes was upregulated in the presence of 0.0001 and 0.1 μM LaCl₃, but these genes were downregulated in the MC3T3-E1 cells treated with 1,000 μM LaCl₃. In addition, the expression of BMP2, Runx2, and OCN proteins was promoted by LaCl₃ at the concentration of 0.0001 μM, but these proteins were downregulated after 1,000 μM LaCl₃ treatment. The results suggest that LaCl₃ likely up- or downregulates the expression of Runx2, which subsequently up- or downregulates osteoblasts marker genes Col I and BMP2 at early stages and ALP and OCN at later stages of differentiation, thus causes to promote or inhibit the proliferation, osteogenic differentiation and mineralization of MC3T3-E1 cells. The results will be helpful for understanding the mechanisms of bone metabolism and application of lanthanum-based compounds in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-012-9486-6DOI Listing

Publication Analysis

Top Keywords

proliferation osteogenic
24
osteogenic differentiation
24
differentiation mineralization
24
mc3t3-e1 cells
24
mineralization mc3t3-e1
20
μm lacl₃
12
lacl₃ proliferation
8
lacl₃
8
inhibit proliferation
8
00001 μm
8

Similar Publications

Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.

View Article and Find Full Text PDF

Beta-adrenergic receptor antagonist propranolol prevents bisphosphonate-related osteonecrosis of the jaw by promoting osteogenesis.

J Dent Sci

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background/purpose: Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement.

View Article and Find Full Text PDF

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Background/purpose: -2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is a bioactive component in the Chinese herb Polygonum multiflorum, recognized for its anti-inflammatory and lipid-lowering properties. Human dental pulp stem cells (hDPSCs) have excellent capabilities in tooth regeneration, wound healing, and neural repair. The exosomes (Exo) released by hDPSCs contain bioactive molecules that influence cell proliferation, differentiation, and immune responses.

View Article and Find Full Text PDF

Background/purpose: Pulp polyp is often eliminated as dental waste. Pulp polyp cells were reported to have high proliferation activity which might be comprised of stem cells. However, little has been known on the presence of stem cells in the pulp polyp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!