A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Invertebrate models of Alzheimer's disease. | LitMetric

Invertebrate models of Alzheimer's disease.

J Alzheimers Dis

Department of Biology, Drexel University, Philadelphia, PA 19104, USA.

Published: September 2013

AI Article Synopsis

  • A majority of human disease-related genes are found in conserved pathways in simple organisms like worms and flies, allowing for effective study of their function.
  • These organisms enable rapid genetic and pharmacological manipulation to gain insights into disease mechanisms that may be similar to those in mammals.
  • The review will focus on how Caenorhabditis elegans and Drosophila melanogaster have been used to model Alzheimer's disease and emphasize recent advancements made in this area.

Article Abstract

A majority of the genes linked to human disease belong to evolutionarily conserved pathways found in simpler organisms, such as Caenorhabditis elegans and Drosophila melanogaster. The genes and pathways of these simple organisms can be genetically and pharmacologically manipulated to better understand the function of their orthologs in vivo, and how these genes are involved in the pathogenesis of different diseases. Often these manipulations can be performed much more rapidly in flies and worms than in mammals, and can generate high quality in vivo data that is translatable to mammalian systems. Other qualities also make these organisms particularly well suited to the study of human disease. For example, developing in vivo disease models can help illuminate the basic mechanisms underlying disease, as in vitro studies do not always provide the natural physiological complexity associated with many diseases. Invertebrate models are relatively inexpensive, easy to work with, have short lifespans, and often have very well characterized and stereotypical development and behavior. This is particularly true for the two invertebrate model organisms that this review will focus on: Caenorhabditis elegans and Drosophila melanogaster. In this review, we will first describe an overview of modeling Alzheimer's disease in flies and worms, and will then highlight some of the more recent advances that these "simple" animals have contributed to our understanding of Alzheimer's disease in recent years.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-2012-121204DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
invertebrate models
8
human disease
8
caenorhabditis elegans
8
elegans drosophila
8
drosophila melanogaster
8
flies worms
8
review will
8
disease
7
models alzheimer's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!