Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide.

Nanoscale

Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, EPFL STI-IMT-LMIS, Station 17, 1015 Lausanne, Switzerland.

Published: September 2012

Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al(2)O(3)/SiO(2) (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al(2)O(3) (positive) and SiO(2) (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2nr31243cDOI Listing

Publication Analysis

Top Keywords

aspect ratios
8
facile fabrication
4
fabrication nanofluidic
4
nanofluidic diode
4
diode membranes
4
membranes anodic
4
anodic aluminium
4
aluminium oxide
4
oxide active
4
active control
4

Similar Publications

Emergence of synchronization-induced patterns in two-dimensional magnetic rod systems under rotating magnetic fields.

Soft Matter

January 2025

Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil.

We investigate the dynamics of two-dimensional assemblies of rod-shaped magnetic colloids under the influence of an external rotating magnetic field. Using molecular dynamics, we simulate the formation of patterns that emerge based on the synchronization degree between the magnetic rods and the rotating field. We then explore the structural and dynamic characteristics of the resulting steady states, examining their evolution as a function of changes in the rods' aspect ratio, the strength of the external magnetic field, and its rotation frequency.

View Article and Find Full Text PDF

Hexagonal boron nitride as a new ultra-thin and efficient anti-coking coating for jet fuel nozzles.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

The pyrolysis coking of hydrocarbon fuel during active cooling has a significant impact on engine performance. The implementation of a passivation layer with a high aspect ratio within the cooling channel is considered to be an effective approach. The achievement of ultra-thin coatings with high permeability, exceptional mechanical properties, outstanding oxidation resistance, while preserving the physical and chemical characteristics of the substrate and the coating morphology remains a formidable challenge.

View Article and Find Full Text PDF

Objective: Isolated craniosynostosis of the sagittal suture results in scaphocephaly characterized by a long, narrow skull. Surgical correction of this condition remains debated, particularly regarding the necessity of directly addressing frontal bossing. This study aimed to assess the effectiveness of extended strip craniectomy combined with bilateral barrel staving in improving cranial morphology without direct intervention on the forehead.

View Article and Find Full Text PDF

Background And Aims: Limited data link manufactured sweeteners impact on metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to evaluate the effects of manufactured sugars (L-glucose) compared to natural sugars (D-glucose) on phenotype, molecular and metabolic changes in mice models fed with either regular diet (RD) or high fat diet (HFD).

Methods: C57BL/6 mice fed 16-weeks with either RD; 70% carbohydrate or HFD; 60% fat, with or without additional glucose (Glu, at 18% w/v) to drinking tap water at weeks 8-16; of either natural (D-Glu) or manufactured (L-Glu) sugars.

View Article and Find Full Text PDF

With the continuous exploitation of global mineral resources, backfill technology for gob areas has become a crucial aspect of mine safety and sustainable development. As a primary method of gob area backfill, slurry backfill directly relates its flow properties and filling height to the efficiency and safety of mine extraction. To enhance the flow properties of the slurry and increase its filling height, a research study on the flow and deposition characteristics of a gas-containing filling slurry was conducted using a combination of theoretical analysis, laboratory experiments, and field tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!