Objective: Periodontal ligament cells (PDLs) produce prostaglandin E(2) (PGE(2)) in response to orthodontic force. PGE(2) is a potent osteoclast-inducing factor that induces the receptor activator of nuclear factor-κB ligand (RANKL). Some studies reported that PDLs express RANKL in response to mechanical stress, whereas another study reported that they do not. Based on an immunohistochemical study, RANKL expression is localized around the alveolar bone surface 3 days after tooth movement. However, ankylosed teeth cannot be moved by therapeutic mechanical stress, suggesting that PDLs play a major role in alveolar bone resorption. In this study, we compared the functional difference in osteoclastogenesis between human PDLs (HPDLs) and normal human osteoblasts (HOBs) as a direct effect of PGE(2) exposure.

Design: We examined the expression of RANKL, osteoprotegerin, and macrophage colony-stimulating factor after 48-h culture with or without PGE(2) (10(-11) to 10(-5)M) in HPDLs and HOBs. Then to confirm whether RANKL produced by PGE(2) treatment induces osteoclastogenesis or not, RAW264.7 cells were co-cultured on HPDLs or HOBs pretreated with 10(-6)M of PGE(2).

Result: PGE(2) exposure increased significantly RANKL expression in HOBs compared with HPDLs. PGE(2) exposure significantly decreased osteoprotegerin expression in HPDLs compared with HOBs. The number of tartrate-resistant acid phosphatase staining osteoclast-like cells from RAW264.7 cells increased significantly by PGE(2) pretreatment in HOBs and was reduced by small interfering RNA knockdown of RANKL.

Conclusion: These results suggest that osteoblasts strongly influence the stimulation of osteoclastogenesis via RANKL, induced by PGE(2) in periodontal tissues, compared with PDLs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.archoralbio.2012.07.009DOI Listing

Publication Analysis

Top Keywords

rankl expression
12
pge2
10
rankl
8
osteoclastogenesis rankl
8
periodontal ligament
8
ligament cells
8
mechanical stress
8
alveolar bone
8
hpdls hobs
8
raw2647 cells
8

Similar Publications

Background: Cystic Fibrosis-related Bone Disease is an emerging challenge faced by 50 % of adult people with cystic fibrosis (CF). The multifactorial causes of this comorbidity remain elusive. However, congenital bone defects have been observed in animal models with CFTR mutations, suggesting its importance.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI.

View Article and Find Full Text PDF

Osteoporosis is characterized by increased osteoclast activity, which is strongly associated with increased levels of reactive oxygen species (ROS). Fraxin, a natural coumarin glycoside, has shown anti-inflammatory and antioxidant properties, but its effects on bone homeostasis are obscure. The effects of fraxin on osteoclast formation and activation were measured via an in vitro osteoclastogenesis assay.

View Article and Find Full Text PDF

Discovery of potent antiosteoporotic cyclic depsipeptides with an unusual nitrile hydroxy acid from Microascus croci.

Bioorg Chem

January 2025

National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China. Electronic address:

Two cyclic octadepsipeptides, microascusins A and B (1 and 2), were identified from the marine sponge-associated Microascus croci IMB19-064 co-cultivated with Escherichia coli. Their structures and conformations in solution were determined by comprehensive spectroscopic data analysis. The absolute configurations of amino and hydroxy acids were determined by the advanced Marfey's and O-Marfey's methods, respectively, as well as chiral-phase HPLC analysis.

View Article and Find Full Text PDF

Osteoporosis, a prevalent metabolic bone disorder, is characterized by reduced bone density and increased fracture risk. The pathogenesis of osteoporosis is closely associated with an imbalance in bone remodeling, in which the resorption function of osteoclasts exceeds the formation function of osteoblasts. Hypoxia has been implicated in the promotion of osteoclast differentiation and the subsequent development of osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!