Persistent organic pollutants in the endangered Hawaiian monk seal (Monachus schauinslandi) from the main Hawaiian Islands.

Mar Pollut Bull

Joint Institute for Marine and Atmospheric Research, University of Hawaii, 1601 Kapiolani Blvd. Suite 1000, Honolulu, HI 96814, USA.

Published: November 2012

Little is known about levels or effects of persistent organic pollutants (POPs) in Hawaiian monk seals (HMS) from the main Hawaiian Islands (MHI) subpopulation. This study examined concentrations of a large suite of POPs in blubber and serum of juvenile and adult HMS from the MHI. Adult females have the lowest blubber levels of most POPs, whereas adult males have highest levels. POPs in serum were significantly different in adult males compared with adult females for chlordanes and summed dichlorodiphenyltrichloroethanes (DDTs). Lipid-normalized concentrations of chlordanes, DDTs, polychlorinated biphenyls, and mirex in paired blubber and serum samples were significantly correlated. Contaminant levels from the MHI were at similar or lower levels than those from remote Northwestern Hawaiian Island populations. Determining initial ranges of POPs is an important step towards assessing one of the many potential health threats to this critically endangered species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2012.07.012DOI Listing

Publication Analysis

Top Keywords

persistent organic
8
organic pollutants
8
hawaiian monk
8
main hawaiian
8
hawaiian islands
8
blubber serum
8
adult females
8
levels pops
8
adult males
8
hawaiian
5

Similar Publications

Risk Factors Associated with Hemoparasites in Dual-Purpose Cattle of Colombia.

Pathogens

January 2025

Centro de Investigación Turipaná, Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, km 13 vía Montería, Cereté 230550, Colombia.

Hemoparasitic diseases represent a significant problem with a considerable impact on tropical and subtropical areas of the world. These conditions cause economic losses associated with multi-organic failure and even the death of animals. In these areas, the hemoparasites are transmitted in an enzootic cycle when infectious cattle, such as persistently infected animals, including cows, contribute to the success of transmission.

View Article and Find Full Text PDF

Environmental Applications of Mass Spectrometry for Emerging Contaminants.

Molecules

January 2025

Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.

Emerging contaminants (ECs), encompassing pharmaceuticals, personal care products, pesticides, and industrial chemicals, represent a growing threat to ecosystems and human health due to their persistence, bioaccumulation potential, and often-unknown toxicological profiles. Addressing these challenges necessitates advanced analytical tools capable of detecting and quantifying trace levels of ECs in complex environmental matrices. This review highlights the pivotal role of mass spectrometry (MS) in monitoring ECs, emphasizing its high sensitivity, specificity, and versatility across various techniques such as Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), and High-Resolution Mass Spectrometry (HR-MS).

View Article and Find Full Text PDF

Protein-Protein Interaction (PPI) prediction plays a pivotal role in understanding cellular processes and uncovering molecular mechanisms underlying health and disease. Structure-based PPI prediction has emerged as a robust alternative to sequence-based methods, offering greater biological accuracy by integrating three-dimensional spatial and biochemical features. This work summarizes the recent advances in computational approaches leveraging protein structure information for PPI prediction, focusing on machine learning (ML) and deep learning (DL) techniques.

View Article and Find Full Text PDF

The functionality of redox metabolism is frequently named as an important contributor to the processes of aging and anti-aging. Excessive activation of free radical reactions accompanied by the inability of the antioxidant defense (AOD) mechanisms to control the flow of the reactive oxygen species (ROS) leads to the persistence of oxidative stress, hypoxia, impaired mitochondrial energy function and reduced ATP potential. From a long-term perspective, such changes contribute to the development of chronic diseases and facilitate aging.

View Article and Find Full Text PDF

Cereal-legume intercropping stimulates straw decomposition and promotes soil organic carbon stability.

Sci China Life Sci

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.

Increasing carbon (C) sequestration and stability in agricultural soils is a key strategy to mitigate climate change towards C neutrality. Crop diversification is an initiative to increase C sequestration in fields, but it is unclear how legume-based crop diversification impacts the functional components of soil organic carbon (SOC) in dryland, including the formation and transformation of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC). We investigated the decomposition of straw residues, the fate of photosynthesized C, as well as the formation of MAOC and POC fractions using an in situC labeling technique in the soybean-wheat intercropping, soybean-maize intercropping and their respective monocropping systems, with and without cover crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!