The effect of high hydrostatic pressure (HHP) treatment (300, 400 and 500 MPa for 1 and 3 min at 20 °C) on the microbiological shelf-life and microbiota composition of Aloe vera gel during 90 days of storage at 4 °C was investigated. Aerobic mesophilic and psychrotrophic bacteria, as well as moulds and yeasts, were enumerated after HHP treatment and through cold storage. Randomly selected isolates from the count plates were identified by standard methods and the API identification system. Results showed that HHP treatment at or over 400 MPa for 3 min were effective to keep the microbial counts to undetectable levels during the whole storage period, and consequently the microbiological shelf-life of A. vera gel was extended for more than 90 days at 4 °C. The microbiota in the untreated A. vera gel was dominated by Gram-negative bacteria (mostly Rahnella aquatilis) and yeasts (mostly Rhodotorula mucilaginosa). In contrast, Gram-positive bacteria tentatively identified as Arthrobacter spp. and Micrococcus/Kocuria spp. were the predominant microorganisms in samples pressurized at 300 MPa for 1 and 3 min, while Bacillus megaterium predominating in samples treated at 400 MPa for 1 min. At 400 MPa for 3 min and above, the microbial growth was completely suppressed during at least 90 days; however, viable spore-formers were detected by enrichment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.07.019 | DOI Listing |
J Food Sci Technol
January 2025
Agri Business Incubator, Department of Agricultural Engineering, College of Agriculture, Kerala Agricultural University, Thrissur, 680656 India.
Unlabelled: The present work investigates the impact of pressure (; 300-600 MPa) and holding time (; 5-20 min) on the quality attributes and microbial stability of jackfruit shreds. The results revealed that the and had significantly affected physico-chemcial and bioactive composition of the jackfruit shreds. Higher levels of and increased the firmness of the shreds.
View Article and Find Full Text PDFWaste Manag
January 2025
Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Jinan 250014, China. Electronic address:
Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
In this paper, alumina-modified wood liquefaction (AL-WP) was prepared by blending nano-alumina (AlO) into wood liquefaction phenolic resin (WP) using a co-blending method. Alumina-modified wood liquefaction protofilament fiber (AL-WPF) was obtained by melt-spinning, curing, and thermo-curing processes, which were followed by carbonization to obtain alumina-modified wood liquefaction carbon fiber (AL-WCF). This paper focuses on the enhancement effect of nano-alumina doping on the mechanical properties and heat resistance of wood liquefaction carbon fiber (WCF), explores the evolution of graphite microcrystalline structure during the high-temperature carbonization process, and optimizes the curing conditions of AL-WPF.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
High Speed 3D Printing Research Center, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan.
Selective laser sintering (SLS) is one of the prominent methods of polymer additive manufacturing (AM). A low-power laser source is used to directly melt and sinter polymer material into the desired shape. This study focuses on the utilization of the low-power laser SLS system to successfully manufacture metallic components through the development of a metal-polymer composite material.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Clarkson University, Potsdam, NY 13699-5820, USA.
Chemical mechanical planarization (CMP) is a technique used to efficiently prepare defect-free, flat surfaces of stainless steel (SS) foils and sheets that are implemented in various modern devices. CMP uses (electro)chemical reactions to structurally weaken the surface layers of a workpiece for easy removal by low-pressure mechanical abrasion. Using a model CMP system of 316/316L stainless steel (SS) in an acidic (pH = 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!