The role of meta-topolins on the photosynthetic pigment profiles and foliar structures of micropropagated 'Williams' bananas.

J Plant Physiol

Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.

Published: October 2012

The effect of five topolins (meta-Topolin=mT; meta-Topolin riboside=mTR; meta-Methoxy topolin=MemT; meta-Methoxy topolin riboside=MemTR and 6-(meta-methoxy)-9-(tetrahydropyran-2-yl)-topolin=MemTTHP) on the photosynthetic pigments and leaf structures of micropropagated 'Williams' bananas was compared with the commonly used benzyladenine (BA). Surface-decontaminated explants were cultured for 70 d on modified Murashige and Skoog (MS) basal medium and supplemented with 10, 20 or 30μM cytokinins (CKs). At 10 d intervals, the photosynthetic pigments were quantified via spectrophotometric methods for 7 cycles. Generally, the maximum pigment content was attained between 40 and 50 d. The control plantlets had the highest pigment content (1150μg/g FW). Among the CKs, 10μM MemTTHP generally had the best pigment stimulatory effect at the same period. After 40 d, scanning electron microscopy (SEM) of the foliar surface showed that the stomata density was highest in 10μM MemTTHP-treated and lowest in 10μM MemTR-treated plantlets. The stomatal structure and pore area also varied with the type and concentration of CK added. Generally, prolonging culture duration as well as increasing CK concentrations reduced the pigment content. However, the drastic breakdown in chlorophyll pigments beyond 50 d was slightly inhibited by the presence of mT, mTR, MemTTHP and BA compared to the control. The CK-treated plantlets at equimolar concentration had comparable chlorophyll a/b and total chlorophyll/carotenoid ratios after 10 d; probably as an adaptive measure. At the end of the current study, 10μM mT and mTR plantlets remained green as reflected by the higher total chlorophyll/carotenoid ratio as well as by the visual observations. A well-developed photosynthetic apparatus enhances the survival of in vitro plantlets during the acclimatization stage. Current findings provide some insight into the role of meta-topolins on photosynthetic parameters in vitro, which inevitably partly contributed to the better acclimatization capability of meta-topolin-regenerants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2012.06.006DOI Listing

Publication Analysis

Top Keywords

pigment content
12
role meta-topolins
8
meta-topolins photosynthetic
8
structures micropropagated
8
micropropagated 'williams'
8
'williams' bananas
8
photosynthetic pigments
8
total chlorophyll/carotenoid
8
photosynthetic
5
pigment
5

Similar Publications

Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.

View Article and Find Full Text PDF

Iron Deficiency in Tomatoes Reversed by Strains: A Synergistic Role of Siderophores and Plant Gene Activation.

Plants (Basel)

December 2024

Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain.

An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but also releasing phyto-siderophores and recruiting siderophore-producing bacterial strains. A screening for siderophore-producing bacterial isolates from the rhizosphere of was carried out, resulting in two strains, Z8.

View Article and Find Full Text PDF

This study explores the effects of varying exposure times of microelement fertilization on hydrochemical parameters, plant growth, and nutrient content in an aquaponic system cultivating L. (pepper) with ( L.).

View Article and Find Full Text PDF

Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.

View Article and Find Full Text PDF

Phycocyanin Additives Regulate Bacterial Community Structure and Antioxidant Activity of Alfalfa Silage.

Microorganisms

December 2024

Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010019, China.

Phycocyanin is a water-soluble pigment protein extracted from prokaryotes such as cyanobacteria and has strong antioxidant activity. As a silage additive, it is expected to enhance the antioxidant activity and fermentation quality of alfalfa silage. This study revealed the effects of different proportions of phycocyanin (1%, 3%, 5%) on the quality, bacterial community and antioxidant capacity of alfalfa silage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!