Cleaning and modification of intraorally contaminated titanium discs with calcium phosphate powder abrasive treatment.

Clin Oral Implants Res

Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, The Netherlands.

Published: November 2013

Objective: The aim of this study was to evaluate the cleaning efficiency on intraorally contaminated titanium discs by using calcium phosphate and air powder abrasive (APA) treatment. The modification of titanium surface (SLA) was evaluated and compared with the conventional air powder abrasive methods and phosphoric acid. This treatment modality might give new perspectives for peri-implant surface treatment.

Materials And Methods: A total of 36 SLA surface titanium discs were kept in the human mouth for 48 h by 14 volunteers. The intraorally contaminated discs were stained with erythrosine dye to make the biofilm visible. Discs were randomly assigned to one of the six groups: APA without powder-only water and air (Control). APA with Hydroxylapatite (HA). APA with Hydroxylapatite and Calcium Phosphate (HA + TCP). APA with Titanium Dioxide (TiO2). APA with EMS Soft Subgingival powder (EMS). Phosphoric Acid. Light microscope photos were taken during the treatment. Following the cleaning, the residual biofilm, surface changes, and surface chemical content were evaluated using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). A systematic random sampling protocol and a point counting method were applied for the quantitative evaluation of the remaining biofilm. Multiple comparisons within and between groups are performed by Kruskall Wallis test and if significant Mann-Whitney U-test as post hoc testing is applied. The significance level was P < 0.05.

Results: All methods with the exception of phosphoric acid could decrease the initial amount of biofilm significantly. Among all air powder abrasive treatments, the HA + TCP group showed the best results with 99% biofilm removal, followed by HA and EMS powders. The cleaning method caused minimal changes to the surface structure. With the exception of the control group, all air powder applications caused sharp edges around the grooves in the implant surface to be rounded. TiO2 powder caused less change than HA and HA + TCP. Phosphoric acid did not cause a visible surface change on the SEM photos. Powder particles remnants were observed on and impacted in the titanium surface. In the HA and HA + TCP group, a Ca content was observed varying between 2% and 5%. In the control group, saliva and biofilm-related elements were observed.

Conclusions: Using the air powder abrasive method with calcium phosphate powders on contaminated titanium discs, an efficient implant cleaning and surface modification can be achieved. This method should be further improved as it has possible potential to be used as an implant surface treatment method for implants involved with peri-implantitis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0501.2012.02536.xDOI Listing

Publication Analysis

Top Keywords

powder abrasive
20
air powder
20
titanium discs
16
calcium phosphate
16
phosphoric acid
16
intraorally contaminated
12
contaminated titanium
12
surface
11
powder
9
discs calcium
8

Similar Publications

Scale-Up of Nanocorundum Synthesis by Mechanochemical Dehydration of Boehmite.

Ind Eng Chem Res

January 2025

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.

This work presents the scale-up of room-temperature mechanochemical synthesis of nanocorundum (high-surface-area α-AlO) from boehmite (γ-AlOOH). This transformation on the 1 g scale using a laboratory shaker mill had previously been reported. High-energy Simoloyer ball mills equipped with milling chambers of sizes ranging from 1 to 20 L were used to scale up the mechanochemical nanocorundum synthesis to the 50 g to 1 kg scale, which paves the way to further increase batch size.

View Article and Find Full Text PDF

The increasing demand for high-performance materials in industrial applications highlights the need for composites with enhanced mechanical and tribological properties. Basalt fiber-reinforced polymers (BFRP) are promising materials due to their superior strength-to-weight ratio and environmental benefits, yet their wear resistance and tensile performance often require further optimization. This study examines how adding copper (Cu) powder to epoxy resin influences the mechanical and tribological properties of BFRP composites.

View Article and Find Full Text PDF

Colour Changes and Surface Roughness After Air-Polishing for Tobacco Stain Removal.

Int Dent J

December 2024

Department of Dental and Oral Medicine and Cranio-maxillofacial and Oral Surgery, University Hospital for Conservative Dentistry and Periodontology, Medical University of Innsbruck, Innsbruck, Austria.

Introduction And Aims: We aimed to investigate the efficacy of air-polishing in restoring the original tooth colour of standardised tobacco-stained tooth specimens.

Methods: Seventy-two specimens consisting of half dentine and half enamel were daily exposed to the smoke of five cigarettes in an automated smoking chamber. Four repetitions of a 14-day smoking cycle were performed.

View Article and Find Full Text PDF

The abrasives of traditional grinding wheels are usually randomly arranged on the substrate, reducing the number of effective abrasive grains involved in the machining during the grinding process. However, there are some problems such as uneven distribution of chip storage space, high grinding temperature, and easy surface burn. In trying to address this issue, an ultrasonic vibration 3D printing method is introduced to fabricate the structured CBN (Cubic Boron Nitride) grinding wheel.

View Article and Find Full Text PDF

A Comparative Study of Precision Surface Grinding Using Additively Fabricated Acrylonitrile-Butadiene-Styrene (ABS) Wheels with Continuous and Serrated Working Surfaces.

Materials (Basel)

November 2024

Faculty of Mechanical Engineering and Ship Technology, Department of Manufacturing and Production Engineering, Institute of Machine and Materials Technology, Gdańsk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdańsk, Poland.

Nowadays, high requirements imposed by mechanical components make it necessary to develop modern production methods. Additive technologies have been dynamically developing in recent years, showing many advantages associated with the fabrication of elements with complex geometries and structures. One of the areas where the potential of additive technologies is exploited is the rapid tooling sector, which is based on the rapid production of tools and components used in various manufacturing methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!