Plants produce structurally diverse triterpenoids, which are important for their life and survival. Most triterpenoids and sterols share a common biosynthetic intermediate, 2,3-oxidosqualene (OS), which is cyclized by 2,3-oxidosqualene cyclase (OSC). To investigate the role of an OSC, marneral synthase 1 (MRN1), in planta, we characterized a Arabidopsis mrn1 knock-out mutant displaying round-shaped leaves, late flowering, and delayed embryogenesis. Reduced growth of mrn1 was caused by inhibition of cell expansion and elongation. Marnerol, a reduced form of marneral, was detected in Arabidopsis overexpressing MRN1, but not in the wild type or mrn1. Alterations in the levels of sterols and triterpenols and defects in membrane integrity and permeability were observed in the mrn1. In addition, GUS expression, under the control of the MRN1 gene promoter, was specifically detected in shoot and root apical meristems, which are responsible for primary growth, and the mRNA expression of Arabidopsis clade II OSCs was preferentially observed in roots and siliques containing developing seeds. The eGFP:MRN1 was localized to the endoplasmic reticulum in tobacco protoplasts. Taken together, this report provides evidence that the unusual triterpenoid pathway via marneral synthase is important for the growth and development of Arabidopsis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2012.05120.xDOI Listing

Publication Analysis

Top Keywords

marneral synthase
12
growth development
8
development arabidopsis
8
mrn1
7
arabidopsis
5
identification marneral
4
synthase critical
4
growth
4
critical growth
4
arabidopsis plants
4

Similar Publications

Article Synopsis
  • * After analyzing over 1,000 plant accessions, we found that some gene clusters (like those for tirucalladienol and marneral) showed little genetic variation, while others (like arabidiol/baruol) were more diverse, with notable changes in gene structure.
  • * The study emphasizes how these evolving MGCs impact plant adaptation and the variations in traits, such as root growth dynamics related to climate conditions.
View Article and Find Full Text PDF

The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA.

Mol Plant

May 2022

Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France. Electronic address:

Clustered organization of biosynthetic non-homologous genes is emerging as a characteristic feature of plant genomes. The co-regulation of clustered genes seems to largely depend on epigenetic reprogramming and three-dimensional chromatin conformation. In this study, we identified the long non-coding RNA (lncRNA) MARneral Silencing (MARS), localized inside the Arabidopsis marneral cluster, which controls the local epigenetic activation of its surrounding region in response to abscisic acid (ABA).

View Article and Find Full Text PDF

Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of cyclic triterpenes, which inherently includes the two-step catalytic formation of the universal linear precursor 2,3-oxidosqualene, is still a major challenge.

View Article and Find Full Text PDF

An extensive literature has shown a powerful neuroprotective action of Erythropoietin (EPO) both in vivo and in vitro. This study shows that EPO, whether ectopically administered or released by neural precursors, does reverse MPTP-induced parkinsonism in mice. Unilateral stereotaxic injection of 2.

View Article and Find Full Text PDF

Purpose: To investigate the expression and function of serum response factor in podocyte epithelial-mesenchymal transition of diabetic nephropathy.

Methods: The expression of serum response factor, epithelial markers and mesenchymal markers was examined in podocytes or renal cortex tissues following high glucose. Serum response factor was upregulated by its plasmids and downregulated by CCG-1423 to investigate how it influenced podocyte epithelial-mesenchymal transition in diabetic nephropathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!